Log in

Coronal tibiofemoral subluxation under valgus stress force radiography is useful for evaluating postoperative coronal tibiofemoral subluxation in mobile-bearing UKA

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

Coronal tibiofemoral subluxation (CTFS) is considered a controversial and potential contraindication to unicompartmental knee arthroplasty (UKA) but is less discussed. The study aims to observe the CTFS in a cohort of patients before and after mobile-bearing UKA and to investigate the relationship between preoperative variables (preoperative CTFS and preoperative CTFS under valgus stress) and postoperative CTFS after mobile-bearing UKA.

Methods

The study retrospectively analyzed 181 patients (224 knees) undergoing mobile-bearing UKA from September 1 2019 to December 31 2021. By using hip-to-ankle anterior–posterior (AP) standing radiographs and valgus stress force radiographs, preoperative CTFS, preoperative CTFS under valgus stress, and postoperative CTFS were measured. CTFS was defined as the distance between the tangent line to the outermost joint edge of the lateral condyle of the femur and the tangent line of the lateral tibial plateau. All patients were divided into two groups based on postoperative CTFS, group A (postoperative CTFS ≤ 5 mm) and group B (postoperative CTFS > 5 mm). The Student’s t-test, one-way ANOVA together with Tukey’s post hoc test, the chi-square test, the Fisher’s exact test, Pearson correlation analysis, simple and multiple linear regression, and univariate and multiple logistic regression were used in the analyses.

Results

The means ± standard deviations (SD) of preoperative CTFS, preoperative CTFS under valgus stress, and postoperative CTFS were 4.96 ± 1.82 mm, 3.06 ± 1.37 mm, and 3.19 ± 1.27 mm. The difference between preoperative CTFS and postoperative CTFS was statistically significant (p < 0.001). The preoperative CTFS (6.35 ± 1.34 mm) in Group B (n = 22) was significantly higher than that (4.81 ± 1.82 mm) in Group A (n = 202) (p < 0.001), so was the variable-preoperative CTFS under valgus stress (5.41 ± 1.00 mm (Group B) > 2.80 ± 1.14 mm (Group A), p < 0.001). In Pearson correlation analysis, there was a correlation between preoperative CTFS and postoperative CTFS (r = 0.493, p < 0.001), while the correlation between preoperative CTFS under valgus stress and postoperative CTFS was stronger (r = 0.842, p < 0.001). In multiple linear regression analysis, preoperative CTFS under valgus stress (β = 0.798, 95% confidence interval (CI) = 0.714–0.883, p < 0.001) was significantly correlated with postoperative CTFS. In multiple logistic regression analysis, preoperative CTFS under valgus stress (OR = 12.412, 95% CI = 4.757–32.384, and p < 0.001) was expressed as the risk factor of postoperative CTFS (> 5 mm).

Conclusion

Preoperative CTFS can be improved significantly after mobile-bearing UKA. In addition, postoperative CTFS is correlated with preoperative CTFS under valgus stress and a higher preoperative CTFS under valgus stress will increase the risk of higher postoperative CTFS (> 5 mm).

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All of the data are available in contact with the correspondence author.

References

  1. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ (2015) Osteoarthritis. Lancet 386(9991):376–387. https://doi.org/10.1016/s0140-6736(14)60802-3

    Article  CAS  PubMed  Google Scholar 

  2. Salaffi F, Carotti M, Stancati A, Grassi W (2005) Health-related quality of life in older adults with symptomatic hip and knee osteoarthritis: a comparison with matched healthy controls. Aging Clin Exp Res 17(4):255–263. https://doi.org/10.1007/bf03324607

    Article  PubMed  Google Scholar 

  3. Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196. https://doi.org/10.1016/s0140-6736(12)61729-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Seng CS, Ho DC, Chong HC, Chia SL, Chin PL, Lo NN, Yeo SJ (2017) Outcomes and survivorship of unicondylar knee arthroplasty in patients with severe deformity. Knee Surg Sports Traumatol Arthrosc 25(3):639–644. https://doi.org/10.1007/s00167-014-3464-9

    Article  CAS  PubMed  Google Scholar 

  5. Mortazavi SMJ, Vosoughi F (2022) Association of alignment variables, posteromedial tibial cartilage wear and anterior cruciate ligament insufficiency in participants with varus knee osteoarthritis: a cross-sectional study. Int Orthop. https://doi.org/10.1007/s00264-022-05358-5

    Article  PubMed  Google Scholar 

  6. Liddle AD, Judge A, Pandit H, Murray DW (2014) Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the National Joint Registry for England and Wales. Lancet 384(9952):1437–1445. https://doi.org/10.1016/s0140-6736(14)60419-0

    Article  PubMed  Google Scholar 

  7. Ma J, Yan Y, Wang W, Wang B, Yue D, Guo W (2021) Lower early revision rates after uncemented Oxford Unicompartmental Knee Arthroplasty (UKA) than cemented Oxford UKA: A meta-analysis. Orthop Traumatol Surg Res 107(3):102802. https://doi.org/10.1016/j.otsr.2021.102802

    Article  PubMed  Google Scholar 

  8. Mohammad HR, Mellon S, Judge A, Dodd C, Murray D (2021) The effect of body mass index on the outcomes of cementless medial mobile-bearing unicompartmental knee replacements. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06549-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moore DM, Sheridan GA, Welch-Phillips A, O’Byrne JM, Kenny P (2021) Good mid- to long-term results of the cemented oxford phase 3 unicompartmental knee arthroplasty in a non-designer centre. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06665-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pongcharoen B, Timjang J (2020) The outcomes of mobile bearing unicompartmental knee arthroplasty and total knee arthroplasty on anteromedial osteoarthritis of the knee in the same patient. Arch Orthop Trauma Surg 140(11):1783–1790. https://doi.org/10.1007/s00402-020-03527-y

    Article  PubMed  Google Scholar 

  11. Crawford DA, Berend KR, Thienpont E (2020) Unicompartmental knee arthroplasty: US and Global Perspectives. Orthop Clin North Am 51(2):147–159. https://doi.org/10.1016/j.ocl.2019.11.010

    Article  PubMed  Google Scholar 

  12. Kozinn SC, Scott R (1989) Unicondylar knee arthroplasty. J Bone Joint Surg Am 71(1):145–150

    Article  CAS  PubMed  Google Scholar 

  13. Affatato S, Caputo D, Bordini B (2019) Does the body mass index influence the long-term survival of unicompartmental knee prostheses? Retrosp Multi Centre Study Int Orthop 43(6):1365–1370. https://doi.org/10.1007/s00264-018-4217-z

    Article  Google Scholar 

  14. Greco NJ, Lombardi AV Jr, Price AJ, Berend ME, Berend KR (2018) Medial mobile-bearing unicompartmental knee arthroplasty in young patients aged less than or equal to 50 years. J Arthroplasty 33(8):2435–2439. https://doi.org/10.1016/j.arth.2018.03.069

    Article  PubMed  Google Scholar 

  15. Berend KR, Lombardi AV Jr, Morris MJ, Hurst JM, Kavolus JJ (2011) Does preoperative patellofemoral joint state affect medial unicompartmental arthroplasty survival? Orthopedics 34(9):e494-496. https://doi.org/10.3928/01477447-20110714-39

    Article  PubMed  Google Scholar 

  16. Crawford DA, Adams JB, Lombardi AV Jr, Berend KR (2019) Activity level does not affect survivorship of unicondylar knee arthroplasty at 5 year minimum follow-up. J Arthroplasty 34(7):1364–1368. https://doi.org/10.1016/j.arth.2019.03.038

    Article  PubMed  Google Scholar 

  17. Pandit H, Jenkins C, Gill HS, Smith G, Price AJ, Dodd CA, Murray DW (2011) Unnecessary contraindications for mobile-bearing unicompartmental knee replacement. J Bone Joint Surg Br 93(5):622–628. https://doi.org/10.1302/0301-620x.93b5.26214

    Article  CAS  PubMed  Google Scholar 

  18. Springer B, Waldstein W, Bechler U, Jungwirth-Weinberger A, Windhager R, Boettner F (2021) The functional status of the ACL in varus OA of the knee: The Association With Varus Deformity and Coronal Tibiofemoral Subluxation. J Arthroplasty 36(2):501–506. https://doi.org/10.1016/j.arth.2020.08.049

    Article  PubMed  Google Scholar 

  19. Greif DN, Epstein AL, Hodgens BH, Jose J, Baraga MG (2021) Current measurement strategies of coronal tibiofemoral subluxation: a systematic review of literature. AJR Am J Roentgenol 216(5):1183–1192. https://doi.org/10.2214/ajr.20.23503

    Article  PubMed  Google Scholar 

  20. Kamenaga T, Nakano N, Ishida K, Tsubosaka M, Kuroda Y, Hayashi S, Matsushita T, Niikura T, Kuroda R, Matsumoto T (2021) Preoperative uncorrectable tibiofemoral subluxation can worsen clinical outcomes after fixed-bearing unicompartmental knee arthroplasty: a retrospective analysis. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04157-8

    Article  PubMed  Google Scholar 

  21. Kamenaga T, Hiranaka T, Hida Y, Nakano N, Kuroda Y, Tsubosaka M, Hayashi S, Kuroda R, Matsumoto T (2021) Lateral osteoarthritis progression is associated with a postoperative residual tibiofemoral subluxation in Oxford UKA. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06729-y

    Article  PubMed  Google Scholar 

  22. Berger RA, Della Valle CJ (2010) Unicompartmental knee arthroplasty: indications, techniques, and results. Instr Course Lect 59:47–56

    PubMed  Google Scholar 

  23. Boettner F, Springer B, Windhager R, Waldstein W (2020) The tibial spine sign does not indicate cartilage damage in the central area of the distal lateral femoral condyle. Knee Surg Sports Traumatol Arthrosc 28(8):2592–2597. https://doi.org/10.1007/s00167-020-05881-1

    Article  PubMed  Google Scholar 

  24. Nam D, Khamaisy S, Gladnick BP, Paul S, Pearle AD (2013) Is tibiofemoral subluxation correctable in unicompartmental knee arthroplasty? J Arthroplasty 28(9):1575–1579. https://doi.org/10.1016/j.arth.2013.03.001

    Article  PubMed  Google Scholar 

  25. Kamenaga T, Takayama K, Ishida K, Hayashi S, Kuroda R, Matsumoto T (2020) Central implantation of the femoral component relative to the tibial insert improves clinical outcomes in fixed-bearing unicompartmental knee arthroplasty. J Arthroplasty 35(11):3108–3116. https://doi.org/10.1016/j.arth.2020.05.071

    Article  PubMed  Google Scholar 

  26. Kim YT, Choi JY, Lee JK, Lee YM, Kim JI (2019) Coronal tibiofemoral subluxation is a risk factor for postoperative overcorrection in high tibial osteotomy. Knee 26(4):832–837. https://doi.org/10.1016/j.knee.2019.05.011

    Article  PubMed  Google Scholar 

  27. Buyukkuscu MO, Misir A, Kirat A, Albayrak K, Sencan K, Camurcu IY, Gursu SS (2021) Tibiofemoral subluxation in the coronal plane does not affect WOMAC and KOOS after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 29(3):914–920. https://doi.org/10.1007/s00167-020-06047-9

    Article  PubMed  Google Scholar 

  28. ** G, Wang HH, Li H, Zhang M (2022) Short-term outcomes of Oxford unicompartmental knee arthroplasty with coronal subluxation of the knee: a retrospective case-control study. J Orthop Traumatol 23(1):6. https://doi.org/10.1186/s10195-022-00626-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kang KT, Son J, Koh YG, Kwon OR, Kwon SK, Lee YJ, Park KK (2018) Effect of femoral component position on biomechanical outcomes of unicompartmental knee arthroplasty. Knee 25(3):491–498. https://doi.org/10.1016/j.knee.2018.03.003

    Article  PubMed  Google Scholar 

  30. Hazratwala K, O’Callaghan WB, Dhariwal S, Wilkinson MPR (2021) Wide variation in tibial slopes and trochlear angles in the arthritic knee: a CT evaluation of 4116 pre-operative knees. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06725-2

    Article  PubMed  Google Scholar 

  31. Gielis WP, Rayegan H, Arbabi V, Ahmadi Brooghani SY, Lindner C, Cootes TF, de Jong PA, Weinans H, Custers RJH (2020) Predicting the mechanical hip-knee-ankle angle accurately from standard knee radiographs: a cross-validation experiment in 100 patients. Acta Orthop 91(6):732–737. https://doi.org/10.1080/17453674.2020.1779516

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang JH, Weinberg DS, Amakoutou K, Cooperman DR, Liu RW (2021) The distal femur trochlear groove appears to compensate for tibial deformity but not femoral deformity in an investigation of five-hundred and seventy-nine cadaveric skeletons. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03998-7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murray D, Goodfellow J, O’Connor J, Dodd C (1999) Oxford Unicompartmental knee: manual of the surgical technique. Biomet UK Ltd, Bridgend, pp. 1–40

  34. Schadler P, Kasparek M, Boettner F, Sgroi M, Faschingbauer M (2017) Coronal tibiofemoral subluxation is not an independent risk factor for total knee arthroplasty in patients with moderate to severe varus-osteoarthritis: data from the “Osteoarthritis Initiative.” Arch Orthop Trauma Surg 137(10):1423–1428. https://doi.org/10.1007/s00402-017-2777-9

    Article  PubMed  Google Scholar 

  35. Ogawa H, Matsumoto K, Akiyama H (2018) Coronal tibiofemoral subluxation is correlated to correction angle in medial opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 26(11):3482–3490. https://doi.org/10.1007/s00167-018-4948-9

    Article  PubMed  Google Scholar 

  36. Khamaisy S, Zuiderbaan HA, Thein R, Nawabi DH, Joskowicz L, Pearle AD (2014) Coronal tibiofemoral subluxation: a new measurement method. Knee 21(6):1069–1071. https://doi.org/10.1016/j.knee.2014.07.013

    Article  PubMed  Google Scholar 

  37. Khamaisy S, Zuiderbaan HA, Thein R, Gladnick BP, Pearle AD (2016) Coronal tibiofemoral subluxation in knee osteoarthritis. Skeletal Radiol 45(1):57–61. https://doi.org/10.1007/s00256-015-2244-z

    Article  PubMed  Google Scholar 

  38. Pandit H, Spiegelberg B, Clavé A, McGrath C, Liddle AD, Murray DW (2016) Aetiology of lateral progression of arthritis following Oxford medial unicompartmental knee replacement: a case-control study. Musculoskelet Surg 100(2):97–102. https://doi.org/10.1007/s12306-015-0394-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tashiro Y, Matsuda S, Okazaki K, Mizu-Uchi H, Kuwashima U, Iwamoto Y (2014) The coronal alignment after medial unicompartmental knee arthroplasty can be predicted: usefulness of full-length valgus stress radiography for evaluating correctability. Knee Surg Sports Traumatol Arthrosc 22(12):3142–3149. https://doi.org/10.1007/s00167-014-3248-2

    Article  PubMed  Google Scholar 

  40. Ishibashi K, Sasaki E, Otsuka H, Kazushige K, Yamamoto Y, Ishibashi Y (2020) Valgus correctability and meniscal extrusion were associated with alignment after unicompartmental knee arthroplasty. Clin Orthop Relat Res 478(7):1636–1644. https://doi.org/10.1097/corr.0000000000001260

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang Q, Yue J, Wang W, Chen Y, Zhao Q, Guo W (2018) FTFA change under valgus stress force radiography is useful for evaluating the correctability of intra-articular varus deformity in UKA. Arch Orthop Trauma Surg 138(7):1003–1009. https://doi.org/10.1007/s00402-018-2945-6

    Article  PubMed  Google Scholar 

  42. Costa CR, Johnson AJ, Mont MA, Bonutti PM (2011) Unicompartmental and total knee arthroplasty in the same patient. J Knee Surg 24(4):273–278. https://doi.org/10.1055/s-0031-1280970

    Article  PubMed  Google Scholar 

  43. Khamaisy S, Nam D, Thein R, Rivkin G, Liebergall M, Pearle A (2015) Limb alignment, subluxation, and bone density relationship in the osteoarthritic varus knee. J Knee Surg 28(3):207–212. https://doi.org/10.1055/s-0034-1376327

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Capital Health Research and Development of Special (grant number 2020-2-4067), National Natural Science Foundation of China (grant number 82072494, 81972130), and Elite Medical Professionals Project of China-Japan Friendship Hospital (NO.ZRJY2021-GG08).

Author information

Authors and Affiliations

Authors

Contributions

CQL, QDZ and WSG designed the study. CQL, JCG and XWS did the data collection. CQL, JCG and CH did the data analysis. CQL wrote the article. QDZ and WSG revised the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qidong Zhang or Wanshou Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the institutional review board of China-Japan Friendship Hospital (approval number 2020–50-k28).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to publish

All authors had consented to the submission of the article to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ge, J., Sun, X. et al. Coronal tibiofemoral subluxation under valgus stress force radiography is useful for evaluating postoperative coronal tibiofemoral subluxation in mobile-bearing UKA. Arch Orthop Trauma Surg 143, 4349–4361 (2023). https://doi.org/10.1007/s00402-022-04666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04666-0

Keywords

Navigation