Log in

Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The monohydroxy alcohol 5-methyl-3-heptanol is studied using rheology at ambient pressure and using dielectric spectroscopy at elevated pressures up to 1.03 GPa. Both experimental techniques reveal that the relaxational behavior of this liquid is intermediate between those that show a large Debye process, such as 2-ethyl-1-hexanol, or a small Debye-like feature, such as 4-methyl-3-heptanol, with which comparisons are made. Various phenomenological approaches assigning a time scale for the rheological signature of supramolecular dynamics in monohydroxy alcohols are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Here, we considered an additive approach G = G ∞,supra + G ∞,α similar to the one expressed by Eq. 8.8.6 in [48]

  2. Instead of a Cole–Cole, also the Cole–Davidson function and generalized approaches were tested. However, the Cole–Cole function gave consistently the most reliable results in particular also for the 265 K isotherm. The α was treated as a free parameter and was found typically found in the range from 0.4 to 0.8.

  3. Also, 2M3H conforms to this trend, see ref. 36.

  4. See Table V and Eq. 1 in ref. 20.

  5. In ref. 25, it was emphasized that particularly for g K values smaller than about unity, their numerical values can sensitively depend on the choice of ε .

  6. See Table 2 in ref. 44

References

  1. McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, London

    Google Scholar 

  2. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  3. Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New York

    Book  Google Scholar 

  4. Böhmer R, Gainaru C, Richert R (2014) Structure and dynamics of monohydroxy alcohols—milestones towards their microscopic understanding, 100 years after Debye. Phys Rep (submitted)

  5. Lou N, Wang Y, Li X, Li H, Wang P, Wesdemiotis C, Sokolov AP, **ong H (2013) Dielectric relaxation and rheological behavior of supramolecular polymeric liquid. Macromolecules 46:3160

    Article  CAS  Google Scholar 

  6. Wang Y, Griffin PJ, Holt A, Fan F, Sokolov AP (2014) Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering. J Chem Phys 140:104510

    Article  Google Scholar 

  7. Griffin PJ, Holt AP, Wang Y, Novikov VN, Sangoro JR, Kremer F, Sokolov AP (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 118:783

    Article  CAS  Google Scholar 

  8. Wang L-M, Richert R (2005) Identification of dielectric and structural relaxations in glass-forming secondary amides. J Chem Phys 123:054516

    Article  Google Scholar 

  9. Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β-relaxation of 1-propanol and o-terphenyl. J Chem Phys 107:1086

    Article  CAS  Google Scholar 

  10. Wang L-M, Richert R (2004) Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols. J Chem Phys 124:11170

    Article  Google Scholar 

  11. Wendt H, Richert R (1998) Purely mechanical solvation dynamics in supercooled liquids: the S0 ← T1 (0-0) transition of naphthalene. J Phys Chem A 102:5775

    Article  CAS  Google Scholar 

  12. Crossley J, Williams G. (1977) Relaxation in hydrogen-bonded liquids studied by dielectric and Kerr-effect techniques. J Chem Soc Faraday Trans 2, 73:1906

  13. Coelho R, Khac Manh D (1967) Utilisation de la biréfringence électro-optique pour l’étude de la relaxation dipolaire dans les liquides polaires faiblement conducteurs. C R Acad Sci Paris - Serie C 264:641

    CAS  Google Scholar 

  14. Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler EA, Böhmer R (2010) Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols. Phys Rev Lett 105:258303

    Article  CAS  Google Scholar 

  15. Gainaru C, Figuli R, Hecksher T, Jakobsen B, Dyre JC, Wilhelm M, Böhmer R (2014) Shear-modulus investigations of monohydroxy alcohols: evidence for a short-chain-polymer rheological response. Phys Rev Lett 112:098301

    Article  CAS  Google Scholar 

  16. Sillrén P, Matic A, Karlsson M, Koza M, Maccarini M, Fouquet P, Götz M, Bauer T, Gulich R, Lunkenheimer P, Loidl A, Mattson J, Gainaru C, Vynokur E, Schildmann S, Bauer S, Böhmer R (2014) Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy. J Chem Phys 140:124501

    Article  Google Scholar 

  17. Bierwirth SP, Büning T, Gainaru C, Sternemann C, Tolan M, Böhmer R (2014) Supramolecular X-ray signature of susceptibility amplification in hydrogen-bonded liquids. (preprint)

  18. Dannhauser W (1968) Dielectric study of intermolecular association in isomeric octyl alcohols. J Chem Phys 48:1911

    Article  CAS  Google Scholar 

  19. Dannhauser W (1968) Dielectric relaxation in isomeric octyl alcohols. J Chem Phys 48:1918

    Article  CAS  Google Scholar 

  20. Johari GP, Dannhauser W (1968) Dielectric study of the pressure dependence of intermolecular association in isomeric octyl alcohols. J Chem Phys 48:5114

    Article  CAS  Google Scholar 

  21. Dannhauser W, Flueckinger AF (1970) Liquid structure and dielectric relaxation of some isomeric methylheptanols. Phys Chem Liq 2:37

    Article  CAS  Google Scholar 

  22. Vij JK, Scaife WG, Calderwood JH (1978) The pressure and temperature dependence of the static permittivity and density of heptanol isomers. J Phys D Appl Phys 11:545

    Article  CAS  Google Scholar 

  23. Vij JK, Scaife WG, Calderwood JH (1981) The pressure and temperature dependence of the complex permittivity of heptanol isomers. J Phys D Appl Phys 14:733

    Article  CAS  Google Scholar 

  24. Singh LP, Richert R (2012) Watching hydrogen bonded structures in an alcohol convert from rings to chains. Phys Rev Lett 109:167802

    Article  Google Scholar 

  25. Singh LP, Alba-Simionesco C, Richert R (2013) Dynamics of glass-forming liquids. XVII. Dielectric relaxation and intermolecular association in a series of isomeric octyl alcohols. J Chem Phys 139:144503

    Article  Google Scholar 

  26. Huth H, Wang L-M, Schick C, Richert R (2007) Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol. J Chem Phys 126:104503

    Article  Google Scholar 

  27. Fragiadakis D, Roland CM, Casalini R (2010) Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions. J Chem Phys 132:144505

    Article  CAS  Google Scholar 

  28. Reiser A, Kasper G, Gainaru C, Böhmer R (2010) High-pressure dielectric scaling study of a monohydroxy alcohol. J Chem Phys 132:181101

    Article  Google Scholar 

  29. Pawlus S, Paluch M, Dzida M (2010) Molecular dynamics changes induced by hydrostatic pressure in a supercooled primary alcohol. J Phys Chem Lett 1:3249

    Article  CAS  Google Scholar 

  30. Schildmann S, Reiser A, Gainaru R, Gainaru C, Böhmer R (2011) Nuclear magnetic resonance and dielectric noise study of spectral densities and correlation functions in the glass forming monoalcohol 2-ethyl-1-hexanol. J Chem Phys 135:174511

    Article  CAS  Google Scholar 

  31. Preuß M, Gainaru C, Hecksher T, Bauer S, Dyre JC, Richert R, Böhmer R (2012) Experimental studies of Debye-like process and structural relaxation in mixtures of 2-ethyl-1-hexanol and 2-ethyl-1-hexyl bromide. J Chem Phys 137:144502

    Article  Google Scholar 

  32. Bauer S, Wittkamp H, Schildmann S, Frey M, Hiller W, Hecksher T, Olsen NB, Gainaru C, Böhmer R (2013) Broadband dynamics in neat 4-methyl-3-heptanol and in mixtures with 2-ethyl-1-hexanol. J Chem Phys 139:134503

    Article  CAS  Google Scholar 

  33. Johari GP (2013) Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation. J Chem Phys 138:154503

    Article  CAS  Google Scholar 

  34. Kirkwood JG (1939) The dielectric polarization of polar liquids. J Chem Phys 7:911

    Article  CAS  Google Scholar 

  35. Boese D, Kremer F (1990) Molecular dynamics in bulk cis-polyisoprene as studied by dielectric spectroscopy. Macromolecules 23:829

    Article  CAS  Google Scholar 

  36. Baur ME, Stockmayer H (1965) Dielectric relaxation in liquid polypropylene oxides. J Chem Phys 43:4319

    Article  CAS  Google Scholar 

  37. Adachi K, Kotaka T (1993) Dielectric normal-mode relaxation. Prog Polym Sci 18:585

    Article  CAS  Google Scholar 

  38. Gainaru C, Hiller W, Böhmer R (2010) A dielectric study of oligo- and poly(propylene glycol). Macromolecules 43:1907

    Article  CAS  Google Scholar 

  39. Johari GP, Dannhauser W (1969) Effect of pressure on dielectric relaxation in isomeric octanols. J Chem Phys 50:1862

    Article  CAS  Google Scholar 

  40. Gray RW, Harrison G, Lamb J (1977) Dynamic viscoelastic behaviour of low-molecular-mass polystyrene melts. Proc R Soc Lond A 356:77

    Article  CAS  Google Scholar 

  41. Inoue T, Onogi T, Yao M-L, Osaki K (1999) Viscoelasticity of low molecular weight polystyrene. Separation of rubbery and glassy components. J Polym Sci Polym Phys 37:389

    Article  CAS  Google Scholar 

  42. Pawlus S, Wikarek M, Gainaru C, Paluch M, Böhmer R (2013) How do high pressures change the Debye process of 4-methyl-3-heptanol? J Chem Phys 139:064501

    Article  CAS  Google Scholar 

  43. Christensen T, Olsen NB (1995) A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz. Rev Sci Instrum 66:5019

    Article  CAS  Google Scholar 

  44. Behrends R, Kaatze U (2001) Hydrogen bonding and chain conformational isomerization of alcohols probed by ultrasonic absorption and shear impedance spectrometry. J Phys Chem A 105:5829

    Article  CAS  Google Scholar 

  45. Maggi C, Jakobsen B, Christensen T, Olsen NB, Dyre JC (2008) Supercooled liquid dynamics studied via shear-mechanical spectroscopy. J Phys Chem B 112:16320

    Article  CAS  Google Scholar 

  46. Gainaru C, Hecksher T, Olsen NB, Böhmer R, Dyre JC (2012) Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides. J Chem Phys 137:064508

    Article  Google Scholar 

  47. Jakobsen B, Hecksher T, Christensen T, Olsen NB, Dyre JC, Niss K (2012) Communication: identical temperature dependence of the time scales of several linear-response functions of two glass-forming liquids. J Chem Phys 136:081102

    Article  Google Scholar 

  48. Strobl G (1997) The Physics of Polymers: Concepts for Understanding their Structures and Behaviour. Springer, Berlin

    Book  Google Scholar 

  49. Davidson DW, Cole RH (1950) Dielectric relaxation in glycerine. J Chem Phys 18:1417

    Article  CAS  Google Scholar 

  50. Deegan RD, Leheny RL, Menon N, Nagel SR, Venerus DC (1999) Dynamic shear modulus of tricresyl phosphate and squalane. J Phys Chem B 103:4066

    Article  CAS  Google Scholar 

  51. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics—I alternating current characteristics. J Chem Phys 9:341

    Article  CAS  Google Scholar 

  52. Roland CM, Hensel-Bielowka S, Paluch M, Casalini R (2005) Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure. Rep Prog Phys 68:1405

    Article  CAS  Google Scholar 

  53. Edward JT (1970) Molecular volumes and the Stokes-Einstein equation. J Chem Educ 47:261

    Article  CAS  Google Scholar 

  54. Hassion FX, Cole RH (1953) Dielectric relaxation processes in ethanol. Nature 172:212

    Article  CAS  Google Scholar 

  55. Gao Y, Bi D, Li X, Liu R, Tian Y, Wang L-M (2013) Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol. J Chem Phys 139:024503

    Article  Google Scholar 

  56. Gao Y, Tu W, Chen Z, Tian Y, Liu R, Wang L-M (2013) Dielectric relaxation of long-chain glass-forming monohydroxy alcohols. J Chem Phys 139:164504

    Article  Google Scholar 

  57. Jakobsen B, Niss K, Olsen NB (2005) Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids. J Chem Phys 123:234511

    Article  Google Scholar 

  58. Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys 19:1484

    Article  CAS  Google Scholar 

  59. Power G, Vij JK, Johari GP (2007) Relaxations and nano-phase-separation in ultraviscous heptanol-alkyl halide mixture. J Chem Phys 126:034512

    Article  CAS  Google Scholar 

  60. Pawlus S, Paluch M, Dzida M (2011) Molecular dynamics changes induced by solvent in 2-ethyl-1-hexanol. Phys Rev E 84:031503

    Article  Google Scholar 

Download references

Acknowledgments

Support of this project by the Deutsche Forschungsgemeinschaft under Grant No. BO1301/8-2 is gratefully acknowledged. S. P. and M. P. acknowledge the financial support of the project by the Polish National Science Centre on the basis of decision No. DEC-2012/05/B/ST4/00089. The centre for viscous liquid dynamics “Glass and Time” is sponsored by the Danish National Research Foundation’s grant No. DNRF61.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gainaru.

Additional information

This is a special issue in honor of Prof. Dr. Friedrich Kremer on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainaru, C., Wikarek, M., Pawlus, S. et al. Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol. Colloid Polym Sci 292, 1913–1921 (2014). https://doi.org/10.1007/s00396-014-3274-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3274-0

Keywords

Navigation