Log in

Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this paper we seek to identify inter-annual sea surface temperature anomalies (SSTA) patterns outside the tropical Pacific that may influence El Niño/Southern Oscillation (ENSO) through atmospheric teleconnections. We assume that a linear ENSO hindcast based on tropical Pacific warm water volume and Niño3.4 SSTA indices captures tropical Pacific intrinsic predictability inherent to recharge oscillator dynamics. This simple hindcast model displays statistically significant skill at the 95 % confidence level at leads of up to seven seasons ahead of the ENSO peak. Our results reveal that ENSO-independent equatorial wind stress anomalies only significantly improve the skill of that linear hindcast at the 95 % level in boreal spring and summer before the ENSO peak and in boreal fall, five seasons ahead of the ENSO peak. At those seasons, the robust large-scale SST patterns that provide a statistically significant enhancement of ENSO predictability are related to the Atlantic meridional mode and south Pacific subtropical dipole mode in spring, the Indian Ocean Dipole and the south Atlantic subtropical dipole mode in fall. While the first two regions display significant simultaneous correlations with western equatorial Pacific wind stress in three reanalyses (ERA-I, NCEP and NCEP2), the Indian Ocean Dipole and south Atlantic subtropical dipole mode correlation with Pacific winds is less robust amongst re-analyses. We discuss our results in view of other studies that suggest a remote influence of various regions on ENSO. Although modest, the sensitivity of our results to the dataset and to details of the analysis method illustrates that finding regions that influence ENSO from the statistical analysis of observations is a difficult task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Before spring, SST 19-22 months and 27-28 months ahead of the ENSO peak is a weakly significant predictor of the ENSO peak (Fig 1a), probably because of the broad ENSO spectral peak around ~4 years.

References

  • Alory G (2002) Inter-annual sea level changes and associated mass transports in the tropical Pacific from TOPEX/Poseidon data and linear model results (1964–1999). J Geophys Res 107:3153

    Article  Google Scholar 

  • Annamalai H, ** El Niño*. J Clim 18:302–319

    Article  Google Scholar 

  • Barnston AG, He Yuxiang, Glantz MH (1999) Predictive skill of statistical and dynamical climate models in sst forecasts during the 1997–1998 El Niño episode and the 1998 La Niña onset. Bull Am Meteor Soc 80:217–243

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bull Am Meteorol Soc 93:631–651

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific 1. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Bosc C, Delcroix T (2008) Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean. J Geophys Res 113:C06003

    Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1605–1611. doi:10.1002/grl.50229

    Article  Google Scholar 

  • Boulanger J-P, Menkes C, Lengaigne M (2004) Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997–1998 El Niño. Clim Dyn 22:267–280

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous pacific and Atlantic meridional modes of tropical atmosphere–ocean variability*. J Clim 17:4143–4158

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30:1399

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S (2001) ENSO prediction using an ENSO trigger and a proxy for Western equatorial pacific warm pool movement. Geophys Res Lett 28:579–582

    Article  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) A seasonal-trend decomposition procedure based on loess (with discussion). J Off Stat 6:3–73

    Google Scholar 

  • Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Clim 23:1957–1978

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Wallace JM (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Clim 16:57–72

    Article  Google Scholar 

  • Deser C, Alexander MA, **e S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Marine Sci 2:115–143

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gleckler PJ, Santer BD, Domingues DM, Pierce DW, Barnett TP, Church JA, Taylor KE, AchutaRao KM, Boyer T, Ishii M, Caldwell PM (2012) Human-induced global ocean warming on multidecadal timescales. Nat Clim Chang. Published online, doi:10.1038/nclimate1553

  • Ham Y-G, Kug J-S, Park J-Y, ** F–F (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern oscillation events. Nat Geosci 6:112–116. doi:10.1038/ngeo1686

    Article  Google Scholar 

  • Harrison DE, Larkin NK (1998) El Niño-Southern Oscillation Sea surface temperature and wind anomalies, 1946–1993. Rev Geophys 36:353

    Article  Google Scholar 

  • Hurrell JW, Trenberth KE (1999) Global sea surface temperature analyses: multiple problems and their implications for climate analysis, modeling, and reanalysis. Bull Am Meteor Soc 80:2661–2678

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat Geosci 3:168–172. doi:10.1038/ngeo760

    Article  Google Scholar 

  • ** F-F (1996) Tropical ocean-atmosphere interaction, the pacific cold tongue, and the El Niño-southern oscillation. Science 274:76–78

    Article  Google Scholar 

  • ** F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • ** F-F (1997b) An equatorial ocean recharge paradigm for ENSO 2. A stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29:2125

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801

    Article  Google Scholar 

  • Latif M, Anderson D, Barnett T et al (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103:14375

    Article  Google Scholar 

  • Lengaigne M, Guilyardi E, Boulanger J-P et al (2004) Triggering of El Niño by westerly wind events in a coupled general circulation model. Clim Dyn 23:601–620

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19:1850–1868

    Article  Google Scholar 

  • Lengaigne M, Hausmann U, Madec G, Menkes C, Vialard J, Molines JM (2011) Mechanisms controlling warm water volume inter-annual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38:1031–1046

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2010) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37:1271–1292

    Article  Google Scholar 

  • McCreary J (1976) Eastern tropical ocean response to changing wind systems: with application to El Niño. J Phys Oceanogr 6:632–645

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006a) ENSO as an integrating concept in earth science. Science (NY) 314:1740–1745

    Article  Google Scholar 

  • McPhaden MJ, Zhang X, Hendon HH, Wheeler MC (2006b) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33:L16702

    Google Scholar 

  • Meehl GA (1993) A coupled air-sea biennial mechanism in the tropical Indian and Pacific regions: role of the ocean. J Clim 6:31–41

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Newman M, Compo G, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Clim 16:3853–3857

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J Meteor Soc Jpn 85:335–348

    Article  Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2011) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38:1521–1543

    Article  Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M et al (2012) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn 40:2049–2071

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J et al (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705

    Article  Google Scholar 

  • Saji NH, Goswami BN, Viayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian ocean. Nature 401:360–363

    Google Scholar 

  • Smith NR (1995) An improved system for tropical ocean subsurface temperature analyses. J Atmos Oceanic Technol 12:850–870

    Article  Google Scholar 

  • Terray P (2010) Southern hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern oscillation. Clim Dyn 36:2171–2199

    Article  Google Scholar 

  • Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Niño–Southern Oscillation: a new perspective. J Clim 18:1351–1368

    Article  Google Scholar 

  • Trenberth KE (2002) Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J Geophys Res 107:4065

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi:10.1029/97JC01444

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vecchi GA, Wittenberg AT, Rosati A (2006) Reassessing the role of stochastic forcing in the 1997–1998 El Niño. Geophys Res Lett 33:L01706. doi:10.1029/2005GL024738

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO*. J Clim 16:2668–2675

    Article  Google Scholar 

  • Wang F (2010) Subtropical dipole mode in the Southern Hemisphere: a global view. Geophys Res Lett 37:L10702. doi:10.1029/2010GL042750

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • **e S-P, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yamagata T, Behera SK, Luo J-J, Masson S, Jury M, and Rao SA (2004) Coupled ocean-atmosphere variability in the tropical Indian Ocean. In: Wang C, **e S-P, and Carton JA (eds) Earth climate: the ocean-atmosphere interaction. Geophys Monogr Ser, 147. AGU, Washington, DC, pp 189–212

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

  • Zhang C (2005) Madden-Julian Oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

  • Zhang H, Clement A, Di Nezio P (2013) The South pacific meridional mode: a mechanism for ENSO-like variability. J Clim (in revision)

Download references

Acknowledgments

Jérôme Vialard, Takeshi Izumo and Matthieu Lengaigne are funded by Institut de Recherche pour le Développement (IRD). Hugo Dayan is funded by a PhD grant of Minsitère de l’Enseignement Supérieur et de la Recherche and by the Institut National des Sciences de l’Univers (INSU) LEFE program. We thank Pascal Terray for numerous discussions on this work, and precious help with the use of the StatPack package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayan, H., Vialard, J., Izumo, T. et al. Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability?. Clim Dyn 43, 1311–1325 (2014). https://doi.org/10.1007/s00382-013-1946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1946-y

Keywords

Navigation