Log in

Enriched electron donor sites and non-overlap** small polaron tunneling electrical conduction in oxygen-deficient β-Ga2O3 thin film on p-Si (100)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Monoclinic β-Ga2O3 thin films were grown on heavily doped p-type Si substrate by pulsed laser deposition (PLD) at growth temperature 700 °C and oxygen partial pressure 1 × 10–2 torr to determine its ac electrical behavior with frequency at different elevated temperatures for its possible harsh environment applications. X-ray diffraction (XRD) and X-ray photoelectron (XPS) spectra reveals a randomly orientated polycrystalline monoclinic β-Ga2O3 phase with all possible chemical states of Ga and O. The electrical characteristics including impedance, dielectric and conductivity of β-Ga2O3/Si (100) heterostructures were performed by impedance analyzer in the frequency domain 100 Hz–1 MHz and temperature from 25 to 400 °C. Three different resistor–capacitor (RC) circuit in series were identified in the Nyquist plots (Zʹʹ vs. Zʹ) which corresponds to the β-Ga2O3 film, Si substrate and interfacial barrier effect and their contributions gradually compensating with temperature. The real electrical permittivity (\({\varepsilon }_{r}{^\prime}\)) increases with temperature from ~ 5.35 (25 °C) to ~ 293.8 (400 °C) and exhibits a Maxwell–Wagner type electrical polarizations based on Koop’s phenomenological theory. The radius and contributions of Cole–Cole plots of dielectric diminished with temperature due to temperature dependent relaxation processes. The oxygen vacancies induced the enhanced electron donor sites in β-Ga2O3 and the activation energy (Ea) for ac electrical conduction for β-Ga2O3 and Si was estimated to be ~ 0.87 eV and 0.07 eV, respectively. The variation of frequency exponents n1 and n2 with temperature revealed two different conduction mechanisms- (i) quantum mechanical model (QMT) for Si (100) substrate, and (ii) non-overlap** small polaron tunneling conduction model for β-Ga2O3.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data of the current study are available from the corresponding author on reasonable request.

References

  1. Z. Gao, M. F. Romero, M. A. Pampillon, E. San Andres, and F. Calle, IEEE Trans. Electron Devices 63, 2729 (2016).

  2. F. Jamaatisomarin, R. Chen, S. Hosseini-Zavareh, S. Lei, JMMP 7, 94 (2023)

    Article  Google Scholar 

  3. J. Xu, W. Zheng, F. Huang, J. Mater. Chem. C 7, 8753 (2019)

    Article  Google Scholar 

  4. M. Dalla Vecchia, S. Ravyts, G. Van Den Broeck, J. Driesen, Energies 12, 2663 (2019)

    Article  Google Scholar 

  5. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018)

    Article  ADS  Google Scholar 

  6. M. Passlack, N.E.J. Hunt, E.F. Schubert, G.J. Zydzik, M. Hong, J.P. Mannaerts, R.L. Opila, R.J. Fischer, Appl. Phys. Lett. 64, 2715 (1994)

    Article  ADS  Google Scholar 

  7. H.-Y. Shih, F.-C. Chu, A. Das, C.-Y. Lee, M.-J. Chen, R.-M. Lin, Nanoscale Res. Lett. 11, 235 (2016)

    Article  ADS  Google Scholar 

  8. O. Seok, W. Ahn, M.-K. Han, M.-W. Ha, J. Vacuum Sci.& Technol. B Nanotechnol. Microelectron. Mater. Process. Measure. Phenomena 31, 011203 (2013)

    Google Scholar 

  9. A. Kaya, H. Mao, J. Gao, R.V. Chopdekar, Y. Takamura, S. Chowdhury, M.S. Islam, IEEE Trans. Electron Devices 64, 2047 (2017)

    Article  ADS  Google Scholar 

  10. A. Paskaleva, D. Spassov, P. Terziyska, J. Phys. Conf. Ser. 794, 012017 (2017)

    Article  Google Scholar 

  11. A. Fiedler, R. Schewski, Z. Galazka, K. Irmscher, ECS J. Solid State Sci. Technol. 8, Q3083 (2019)

    Article  Google Scholar 

  12. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Physica Status Solidi (a) 211, 21 (2014)

    Article  ADS  Google Scholar 

  13. J. Yang, S. Ahn, F. Ren, S.J. Pearton, S. Jang, A. Kuramata, IEEE Electron Device Lett. 38, 906 (2017)

    Article  ADS  Google Scholar 

  14. X. Lu, Y. Deng, Y. Pei, Z. Chen, G. Wang, J. Semicond. 44, 061802 (2023)

    Article  ADS  Google Scholar 

  15. K. Tetzner, K. Egbo, M. Klupsch, R.-S. Unger, A. Popp, T.-S. Chou, S.B. Anooz, Z. Galazka, A. Trampert, O. Bierwagen, J. Würfl, Appl. Phys. Lett. 120, 112110 (2022)

    Article  ADS  Google Scholar 

  16. J. Kim, M.A. Mastro, M.J. Tadjer, J. Kim, ACS Appl. Mater. Interfaces 10, 29724 (2018)

    Article  Google Scholar 

  17. M. Sharma, A. Singh, A. Kapoor, A. Singh, B.R. Tak, S. Kaushik, S. Bhattacharya, R. Singh, ACS Appl. Electron. Mater. 5, 2296 (2023)

    Article  Google Scholar 

  18. Z. Chen, X. Wang, F. Zhang, S. Noda, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. Guo, Appl. Phys. Lett. 109, 022107 (2016)

    Article  ADS  Google Scholar 

  19. P. Gollakota, A. Dhawan, P. Wellenius, L.M. Lunardi, J.F. Muth, Y.N. Saripalli, H.Y. Peng, H.O. Everitt, Appl. Phys. Lett. 88, 221906 (2006)

    Article  ADS  Google Scholar 

  20. P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, W. Tang, J. Mater. Chem. C 5, 10562 (2017)

    Article  Google Scholar 

  21. D. Guo, Y. Su, H. Shi, P. Li, N. Zhao, J. Ye, S. Wang, A. Liu, Z. Chen, C. Li, W. Tang, ACS Nano 12, 12827 (2018)

    Article  Google Scholar 

  22. Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. Guo, Appl. Phys. Lett. 109, 102106 (2016)

    Article  ADS  Google Scholar 

  23. M.K. Yadav, A. Mondal, S. Das, S.K. Sharma, A. Bag, J. Alloy. Compd. 819, 153052 (2020)

    Article  Google Scholar 

  24. S. Pal, C. Jacob, Bull. Mater. Sci. 27, 501 (2004)

    Article  Google Scholar 

  25. M. Bartic, Physica Status Solidi (a) 213, 457 (2016)

    Article  ADS  Google Scholar 

  26. S. Karmakar, B. Panda, B. Sahoo, K.L. Routray, S. Varma, D. Behera, Mater. Sci. Semicond. Process. 88, 198 (2018)

    Article  Google Scholar 

  27. J. Kolte, P. Gopalan, Appl. Phys. A 128, 763 (2022)

    Article  ADS  Google Scholar 

  28. R. Schmidt, P. Mayrhofer, U. Schmid, A. Bittner, J. Appl. Phys. 125, 084501 (2019)

    Article  ADS  Google Scholar 

  29. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  ADS  Google Scholar 

  30. S. Karmakar, H.S. Mohanty, D. Behera, Eur. Phys. J. Plus 136, 1038 (2021)

    Article  Google Scholar 

  31. S. Karmakar, V. Parey, C.D. Mistari, R. Thapa, M.A. More, D. Behera, J. Appl. Phys. 127, 034102 (2020)

    Article  ADS  Google Scholar 

  32. L. Ghadbeigi, R. Sun, J. Jesenovec, A. Bhattacharyya, J. McCloy, S. Krishnamoorthy, M.A. Scarpulla, B. Sensale-Rodriguez, J. Appl. Phys. 131, 085102 (2022)

    Article  ADS  Google Scholar 

  33. S. Karmakar, D. Behera, J. Phys. Condens. Matter 31, 245701 (2019)

    Article  ADS  Google Scholar 

  34. M. Mayes, F. Farahmand, M. Grossnickle, M. Lohmann, M. Aldosary, J. Li, V. Aji, J. Shi, J.C.W. Song, N.M. Gabor, Proc. Natl. Acad. Sci. U.S.A. 120, e2221815120 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Office of Research and Sponsored Programs for project funding and Shared Research Operation (SRO) for instrumental facilities at Texas State University.

Author information

Authors and Affiliations

Authors

Contributions

S.K.: Methodology, experiment, written and review the manuscript. I.F.S.: Preparation of the samples and data curation. R.D. and A.H.: Supervision, review, project funding, resources.

Corresponding authors

Correspondence to Subrata Karmakar or Ariful Haque.

Ethics declarations

Conflict of interest

None of the authors of this study has any financial interest or conflict with industries or parties.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Shiam, I.F., Droopad, R. et al. Enriched electron donor sites and non-overlap** small polaron tunneling electrical conduction in oxygen-deficient β-Ga2O3 thin film on p-Si (100). Appl. Phys. A 130, 510 (2024). https://doi.org/10.1007/s00339-024-07656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07656-8

Keywords

Navigation