Log in

Growth of heteroepitaxial La and Mn co-substituted BiFeO3 thin films on Si (100) substrate by pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, heteroepitaxial Bi0.90La0.10Fe0.95Mn0.05O3 (BLFMO) thin films have been grown on Si (100) substrate using LaNiO3/CeO2/Y0.08Zr0.92O3 buffer layers and on SrTiO3 (STO) substrate using pulsed laser deposition. SrRuO3 (SRO) has been used as a bottom electrode in both cases. AC conductivity analysis reveals that BLFMO films deposited on SrTiO3 (STO) substrate are governed by translational hop**, while those deposited on Si are governed by relocalized reorientation hop**. Also, films on STO have DC conductivity dominance over the low frequency range. The remnant polarization for the films deposited on Si and STO is 24 and 66 µC/cm2, while the coercive field is 280 kV/cm and 251 kV/cm, respectively. Impedance and modulus analysis reveals that both the samples show electrical heterogeneity. The leakage current mechanism can be well explained using space charge limited current (SCLC) and Fowler–Nordheim (FN) conduction mechanism for films deposited on all substrates. Films deposited on STO have Schottky behavior at low field and SCLC and FN tunneling current mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.A. Hill, K.M. Rabe, First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite. Phys. Rev. B 59, 8759 (1999)

    Article  ADS  Google Scholar 

  2. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  ADS  Google Scholar 

  4. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97, 1993–2011 (2014)

    Article  Google Scholar 

  5. J. Kolte, A. Daryapurkar, P. Apte, P. Gopalan, Effect of oxygen pressure on the structural, electrical properties of Bi0.90La0.10Fe0.95Mn0.05O3 thin films and characterization for memory applications, Applications of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), 2012 Intl Symp, IEEE, 2012, pp. 1–4

  6. J. Kolte, D. Gulwade, A. Daryapurkar, P. Gopalan, Microstructural characterization of ferroelectric bismuth ferrite (BiFeO3) ceramic by electron backscattered diffraction. Mater. Sci. Forum. 702, 1011–1014 (2012)

    Google Scholar 

  7. P.S. Jayant Kolte, A.S. Daryapurkar, P. Gopalan, Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering. AIP Adv. 5, 097164 (2015)

    Article  ADS  Google Scholar 

  8. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  ADS  Google Scholar 

  9. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  ADS  Google Scholar 

  10. J. Hemberger, P. Lunkenheimer, R. Fichtl, H.A. Krug von Nidda, V. Tsurkan, A. Loidl, Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434, 364–367 (2005)

    Article  ADS  Google Scholar 

  11. N. Hur, S. Park, P. Sharma, S. Guha, S. Cheong, Colossal magnetodielectric effects in DyMn2O5. Phys. Rev. Lett. 93, 107207 (2004)

    Article  ADS  Google Scholar 

  12. S.M. Selbach, M.-A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2008)

    Article  Google Scholar 

  13. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, BiFeO3: a review on synthesis, do** and crystal structure. Integr. Ferroelectr. 126, 47–59 (2011)

    Article  Google Scholar 

  14. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  15. V.K. Kondo, V.S. Singh, V.H. Ishiwara, New ferroelectric material for embedded FRAM LSIs. Fujitsu Sci. Tech. J 43, 502–507 (2007)

    Google Scholar 

  16. X. Qi, P.-C. Tsai, Y.-C. Chen, Q.-R. Lin, J.-C.-A. Huang, W.-C. Chang, I.-G. Chen, Optimal growth windows of multiferroic BiFeO3 films and characteristics of ferroelectric domain structures. Thin Solid Films 517, 5862–5866 (2009)

    Article  ADS  Google Scholar 

  17. S. Ke, P. Lin, X. Zeng, H. Huang, L.M. Zhou, Y.W. Mai, Tuning of dielectric and ferroelectric properties in single phase BiFeO3 ceramics with controlled Fe2+/Fe3+ ratio. Ceram. Int. 40, 5263–5268 (2014)

    Article  Google Scholar 

  18. D.S. García-Zaleta, A.M. Torres-Huerta, M.A. Domínguez-Crespo, J.A. Matutes-Aquino, A.M. González, M.E. Villafuerte-Castrejón, Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties. Ceram. Int. 40, 9225–9233 (2014)

    Article  Google Scholar 

  19. P. Tirupathi, S.K. Mandal, A. Chandra, Effect of oxygen annealing on the multiferroic properties of Ca2+ doped BiFeO3 nanoceramics. J. Appl. Phys. 116, 244105 (2014)

    Article  ADS  Google Scholar 

  20. J. Kolte, A. Daryapurkar, D. Gulwade, P. Gopalan, Microwave sintered Bi0.90La0.10Fe0.95Mn0.05O3 nanocrystalline ceramics: Impedance and modulus spectroscopy. Ceram. Int. 42, 12914–12921 (2016)

    Article  Google Scholar 

  21. J. Kolte, A. Daryapurkar, M. Agarwal, D. Gulwade, P. Gopalan, Effect of substrate temperature on the structural and electrical properties of La and Mn co-doped BiFeO3 thin films. Thin Solid Films 619, 308–316 (2016)

    Article  ADS  Google Scholar 

  22. A. Perejon, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, J.M. Criado, J.R. de Paz, R. Saez-Puche, N. Maso, A.R. West, Single phase, electrically insulating, multiferroic La-substituted BiFeO3 prepared by mechanosynthesis. J. Mater. Chem C. 2, 8398–8411 (2014)

    Article  Google Scholar 

  23. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. **e, T.L. Ren, Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3. Appl. Phys. Lett. 97, 222904 (2010)

    Article  ADS  Google Scholar 

  24. Z. Zhong, Y. Sugiyama, H. Ishiwara, Thickness dependences of polarization characteristics in Mn-substituted BiFeO3 films on pt electrodes. Jpn. J. Appl. Phys. 47, 6448 (2008)

    Article  ADS  Google Scholar 

  25. S. Singh, H. Ishiwara, K. Maruyama, Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 88, 262908 (2006)

    Article  ADS  Google Scholar 

  26. A. Lahmar, S. Habouti, C.-H. Solterbeck, M. Es-Souni, B. Elouadi, Correlation between structure, dielectric, and ferroelectric properties in BiFeO3–LaMnO3 solid solution thin films. J. Appl. Phys. 105, 014111 (2009)

    Article  ADS  Google Scholar 

  27. S. Habouti, C. Solterbeck, M. Es-Souni, LaMnO3 effects on the ferroelectric and magnetic properties of chemical solution deposited BiFeO3 thin films. J. Appl. Phys. 102, 074107 (2007)

    Article  ADS  Google Scholar 

  28. D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee, Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Appl. Phys. Lett. 86, 222903 (2005)

    Article  ADS  Google Scholar 

  29. H. Jang, S. Baek, D. Ortiz, C. Folkman, C. Eom, Y. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, D. Schlom, Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage. Appl. Phys. Lett. 92, 62910 (2008)

    Article  Google Scholar 

  30. V. Shelke, G. Srinivasan, A. Gupta, Ferroelectric properties of BiFeO3 thin films deposited on substrates with large lattice mismatch. Phys. Status Sol. RRL. 4, 79–81 (2010)

    Article  Google Scholar 

  31. I. Leontyev, Y.I. Yuzyuk, P. Janolin, M. El-Marssi, D. Chernyshov, V. Dmitriev, Y.I. Golovko, V. Mukhortov, B. Dkhil, Orthorhombic polar Nd-doped BiFeO3 thin film on MgO substrate. J. Phys. Condens. Matter 23, 332201 (2011)

    Article  Google Scholar 

  32. L. Pintilie, C. Dragoi, Y. Chu, L. Martin, R. Ramesh, M. Alexe, Orientation-dependent potential barriers in case of epitaxial Pt-BiFeO3-SrRuO3 capacitors. Appl. Phys. Lett. 94, 232902 (2009)

    Article  ADS  Google Scholar 

  33. F. Johann, A. Morelli, D. Biggemann, M. Arredondo, I. Vrejoiu, Epitaxial strain and electric boundary condition effects on the structural and ferroelectric properties of BiFeO3 films. Phys. Rev. B 84, 094105 (2011)

    Article  ADS  Google Scholar 

  34. V. Bouquet, F. Baudouin, V. Demange, S. Députier, S. Ollivier, L. Joanny, L. Rault, A. Fouchet, M. Guilloux-Viry, Influence of two-dimensional oxide nanosheets seed layers on the growth of (100) BiFeO3 thin films synthesized by chemical solution deposition. Thin Solid Films 693, 137687 (2020)

    Article  ADS  Google Scholar 

  35. M. Suzuki, T. Ami, A proposal of epitaxial oxide thin film structures for future oxide electronics. Mater. Sci. Eng., B 41, 166–173 (1996)

    Article  Google Scholar 

  36. V. Trtık, C. Ferrater, F. Sánchez, M. Varela, J. Fontcuberta, M. Bibes, B. Martınez, X-ray diffraction study of lattice engineered manganite magnetoresistive films. J. Cryst. Growth 209, 842–849 (2000)

    Article  ADS  Google Scholar 

  37. C. Pellet, C. Schwebel, P. Hesto, Physical and electrical properties of yttria-stabilized zirconia epitaxial thin films deposited by ion beam sputtering on silicon. Thin Solid Films 175, 23–28 (1989)

    Article  ADS  Google Scholar 

  38. C.-H. Chen, A. Saiki, N. Wakiya, K. Shinozaki, N. Mizutani, Effects of deposition temperature on structural defect and electrical resistivity in heteroepitaxial La0.5Sr0.5CoO3/CeO2/YSZ/Si films. J. Vac. Sci. Technol. A. 20, 1749–1754 (2002)

    Article  ADS  Google Scholar 

  39. J. Jiang, S.G. Yoon, Epitaxial 0.65PbMg1/3Nb2/3O3–0.35PbTiO3 (PMN–PT) thin films grown on LaNiO3/CeO2/YSZ buffered Si substrates. J. Alloys Compd. 509, 3065–3069 (2011)

    Article  Google Scholar 

  40. T. Matthee, J. Wecker, H. Behner, G. Friedl, O. Eibl, K. Samwer, Orientation relationships of epitaxial oxide buffer layers on silicon (100) for high-temperature superconducting YBa2Cu3O7−x films. Appl. Phys. Lett. 61, 1240–1242 (1992)

    Article  ADS  Google Scholar 

  41. Q. Li, S. Wang, P. Lim, J. Chai, A. Huan, C. Ong, The decomposition mechanism of SiO2 with the deposition of oxygen-deficient M (Hf or Zr)Ox films. Thin Solid Films 462, 106–109 (2004)

    Article  ADS  Google Scholar 

  42. M. Yoshimoto, H. Nagata, T. Tsukahara, H. Koinuma, In situ RHEED observation of CeO2 film growth on Si by laser ablation deposition in ultrahigh-vacuum. Jpn. J. Appl. Phys. 29, L1199 (1990)

    Article  ADS  Google Scholar 

  43. J. Connell, B. Isaac, G. Ekanayake, D. Strachan, S. Seo, Preparation of atomically flat SrTiO3 surfaces using a deionized-water leaching and thermal annealing procedure. Appl. Phys. Lett. 101, 251607 (2012)

    Article  ADS  Google Scholar 

  44. M.C. Sekhar, M.R. Singh, S. Basu, S. Pinnepalli, Giant Faraday rotation in BixCe3-xFe5O12 epitaxial garnet films. Opt. Express 20, 9624–9639 (2012)

    Article  ADS  Google Scholar 

  45. A.K. Jonscher, Dielectric Relaxation in Solids Chelsea Dielectrics Press Limited, London, (1983)

  46. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)

    Article  ADS  Google Scholar 

  47. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  48. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep. 5(9953), 1–9 (2015)

    Google Scholar 

  49. R. Jiménez, C. Alemany, M. Calzada, A. González, J. Ricote, J. Mendiola, Processing effects on the microstructure and ferroelectric properties of strontium bismuth tantalate thin films. Appl. Phys. A 75, 607–615 (2002)

    Article  ADS  Google Scholar 

  50. D. Song, X. Tang, B. Yuan, X. Zuo, J. Yang, L. Chen, W. Song, X. Zhu, Y. Sun, Thickness dependence of dielectric, leakage, and ferroelectric properties of Bi6Fe2Ti3O18 thin films derived by chemical solution deposition. J. Am. Ceram. Soc. 97, 3857–3863 (2014)

    Article  Google Scholar 

  51. S. Iakovlev, C.-H. Solterbeck, M. Kuhnke, M. Es-Souni, Multiferroic BiFeO3 thin films processed via chemical solution deposition: structural and electrical characterization. J. Appl. Phys. 97, 094901 (2005)

    Article  ADS  Google Scholar 

  52. A. Huang, S. Shannigrahi, Effect of bottom electrode and resistive layer on the dielectric and ferroelectric properties of sol–gel derived BiFeO3 thin films. J. Alloy. Compd. 509, 2054–2059 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks IRCC, IIT Bombay for providing vibrating sample magnetometer and broadband dielectric spectrometer facilities.

N.B.

Part of the work has been carried out at IIT Bombay as a part of PhD thesis.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JK; methodology: JK and PG; formal analysis and investigation: JK; writing—review and editing: JK and PG.

Corresponding author

Correspondence to Jayant Kolte.

Ethics declarations

Conflict of interest

Not applicable.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolte, J., Gopalan, P. Growth of heteroepitaxial La and Mn co-substituted BiFeO3 thin films on Si (100) substrate by pulsed laser deposition. Appl. Phys. A 128, 763 (2022). https://doi.org/10.1007/s00339-022-05900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05900-7

Keywords

Navigation