Log in

Multi-phase-field modeling of grain growth in polycrystalline titanium under magnetic field and elastic strain

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A two-dimensional constitutive model was developed to simulate grain boundary motion in polycrystalline titanium exposed simultaneously to magnetic field and elastic strain based on the thermodynamic laws. The multi-scale coupled finite element and multi-phase-field simulations were used to investigate the simultaneous effects of the driving forces arising from the magnetic field and elastic strain energy on microstructure evolution of titanium bicrystalline and polycrystalline samples. The multi-phase-field approach was employed to implement the kinetic relations of grain boundary migration at the mesoscale level. On the other hand, the equilibrium equations were implemented on a macroscale level by the finite element method. Based on the simulation results, the magnetically induced driving force overrides the elastic strain driving force and causes texture evolution toward orientations that contain less magnetic stored energy when the microstructure is exposed to a magnetic field of sufficient strength. Additionally, applying an elastic strain before annealing reduces the time required for magnetic field annealing by accelerating the microstructure evolution. The mean grain size and desired texture grow rapidly when the magnetic field strength and elastic strain are simultaneously increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Upon reasonable request, the corresponding author will provide the datasets that support the findings of the current study.

References

  1. M. Jamshidian, P. Thamburaja, T. Rabczuk, A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films. J. Comput. Phys. 327, 779–798 (2016). https://doi.org/10.1016/j.jcp.2016.09.061

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P. Thamburaja, M. Jamshidian, A multiscale Taylor model-based constitutive theory describing grain growth in polycrystalline cubic metals. J. Mech. Phys. Solids 63(1), 1–28 (2014). https://doi.org/10.1016/j.jmps.2013.10.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P. Sonnweber-Ribic, P. Gruber, G. Dehm, E. Arzt, Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta Mater. 54(15), 3863–3870 (2006). https://doi.org/10.1016/j.actamat.2006.03.057

    Article  ADS  Google Scholar 

  4. M. Jamshidian, T. Rabczuk, Phase field modelling of stressed grain growth: analytical study and the effect of microstructural length scale, vol. 261 (Academic Press Inc., Cambridge, 2014), pp.23–35

    MATH  Google Scholar 

  5. T.G. Nieh, J. Wadsworth, Hall-petch relation in nanocrystalline solids. Scr. Metall. Mater. 25(4), 955–958 (1991). https://doi.org/10.1016/0956-716X(91)90256-Z

    Article  Google Scholar 

  6. P.E. Goins, H.A. Murdoch, E. Hernández-Rivera, M.A. Tschopp, Effect of magnetic fields on microstructure evolution. Comput. Mater. Sci. 150(April), 464–474 (2018). https://doi.org/10.1016/j.commatsci.2018.04.034

    Article  Google Scholar 

  7. H. Saito, A. Iwabuchi, T. Shimizu, Effects of Co content and WC grain size on wear of WC cemented carbide. Wear 261(2), 126–132 (2006). https://doi.org/10.1016/j.wear.2005.09.034

    Article  Google Scholar 

  8. K.D. Ralston, N. Birbilis, Effect of grain size on corrosion: a review. Corrosion 66(7), 0750051–07500513 (2010). https://doi.org/10.5006/1.3462912

    Article  Google Scholar 

  9. G. Ben Hamu, D. Eliezer, L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloys Compd. 468(1–2), 222–229 (2009). https://doi.org/10.1016/j.jallcom.2008.01.084

    Article  Google Scholar 

  10. C.V. Thompson, R. Carel, Stress and grain growth in thin films. J. Mech. Phys. Solids 44(5), 657–673 (1996). https://doi.org/10.1016/0022-5096(96)00022-1

    Article  ADS  Google Scholar 

  11. E. Shahnooshi, M. Jamshidian, M. Jafari, S. Ziaei-Rad, T. Rabczuk, Phase field modeling of stressed grain growth: effect of inclination and misorientation dependence of grain boundary energy. J. Cryst. Growth 518(February), 18–29 (2019). https://doi.org/10.1016/j.jcrysgro.2019.04.015

    Article  ADS  Google Scholar 

  12. M. Jafari, M. Jamshidian, S. Ziaei-Rad, D. Raabe, F. Roters, Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods. Int. J. Plast. 99, 19–42 (2017). https://doi.org/10.1016/j.ijplas.2017.08.004

    Article  Google Scholar 

  13. M.S. Ghaffari Rad, M. Jafari Gelooyak, M. Jamshidian, A. Saeed, M. Silani, T. Rabczuk, Phase field modelling of normal and stressed grain growth: the effect of RVE size and microscopic boundary conditions. Int. J. Multiscale Comput. Eng. 19(1), 1–15 (2021). https://doi.org/10.1615/intjmultcompeng.2021035463

    Article  Google Scholar 

  14. M. Jafari, M. Jamshidian, S. Ziaei-Rad, B.J. Lee, Modeling length scale effects on strain induced grain boundary migration via bridging phase field and crystal plasticity methods, vol. 174–175 (Elsevier Ltd, Amsterdam, 2019)

    Google Scholar 

  15. A.D. Sheikh-Ali, D.A. Molodov, H. Garmestani, Migration and reorientation of grain boundaries in Zn bicrystals during annealing in a high magnetic field. Scr. Mater. 48(5), 483–488 (2003). https://doi.org/10.1016/S1359-6462(02)00508-0

    Article  Google Scholar 

  16. A.D. Sheikh-Ali, D.A. Molodov, H. Garmestani, Boundary migration in Zn bicrystal induced by a high magnetic field. Appl. Phys. Lett. 82(18), 3005–3007 (2003). https://doi.org/10.1063/1.1572536

    Article  ADS  Google Scholar 

  17. W. Mullins, Magnetically induced grain-boundary motion in bismuth. Acta Metall. 4(4), 421–432 (1956). https://doi.org/10.1016/0001-6160(56)90033-5

    Article  Google Scholar 

  18. D.A. Molodov, P.J. Konijnenberg, Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields. Zeitschrift fuer Met. Res. Adv. Tech. 96(10), 1158–1165 (2005). https://doi.org/10.3139/146.101156

    Article  Google Scholar 

  19. D.A. Molodov, C. Bollmann, P.J. Konijnenberg, L.A. Barrales-Mora, V. Mohles, Annealing texture and microstructure evolution in titanium during grain growth in an external magnetic field. Mater. Trans. 48(11), 2800–2808 (2007). https://doi.org/10.2320/matertrans.MI200701

    Article  Google Scholar 

  20. D.A. Molodov, N. Bozzolo, Observations on the effect of a magnetic field on the annealing texture and microstructure evolution in zirconium. Acta Mater. 58(10), 3568–3581 (2010). https://doi.org/10.1016/j.actamat.2010.02.027

    Article  ADS  Google Scholar 

  21. D.A. Molodov, A.D. Sheikh-Ali, Effect of magnetic field on texture evolution in titanium. Acta Mater. 52(14), 4377–4383 (2004). https://doi.org/10.1016/j.actamat.2004.06.004

    Article  ADS  Google Scholar 

  22. D.A. Molodov, C. Günster, G. Gottstein, Grain boundary motion and grain growth in zinc in a high magnetic field. J. Mater. Sci. 49(11), 3875–3884 (2014). https://doi.org/10.1007/s10853-013-7699-5

    Article  ADS  Google Scholar 

  23. L.A. Barrales-Mora, V. Mohles, P.J. Konijnenberg, D.A. Molodov, A novel implementation for the simulation of 2-D grain growth with consideration to external energetic fields. Comput. Mater. Sci. 39(1), 160–165 (2007). https://doi.org/10.1016/j.commatsci.2006.01.026

    Article  Google Scholar 

  24. H.C. Lei, X.B. Zhu, Y.P. Sun, L. Hu, W.H. Song, Effects of magnetic field on grain growth of non-ferromagnetic metals: a monte carlo simulation. EPL 85(3), 38004 (2009). https://doi.org/10.1209/0295-5075/85/38004

    Article  ADS  Google Scholar 

  25. J.B. Allen, Simulations of anisotropic texture evolution on paramagnetic and diamagnetic materials subject to a magnetic field using Q-state monte carlo. J. Eng. Mater. Technol. Trans. ASME 138(4), 1–9 (2016). https://doi.org/10.1115/1.4033908

    Article  Google Scholar 

  26. T. He, Y. Wang, W. Sun, X. Zhao, The evolution of recrystallized texture of cold-rolled pure copper annealed with a magnetic field in the transverse direction. IOP Conf. Ser. Mater. Sci. Eng. 82(1), 012055 (2015). https://doi.org/10.1088/1757-899X/82/1/012055

    Article  Google Scholar 

  27. P. Sonnweber-Ribic, P.A. Gruber, G. Dehm, H.P. Strunk, E. Arzt, Kinetics and driving forces of abnormal grain growth in thin Cu films. Acta Mater. 60(5), 2397–2406 (2012). https://doi.org/10.1016/j.actamat.2011.12.030

    Article  ADS  Google Scholar 

  28. Y. Rezaei, M. Jafari, M. Jamshidian, Phase-field modeling of magnetic field-induced grain growth in polycrystalline metals. Comput. Mater. Sci. 200, 110786 (2021). https://doi.org/10.1016/J.COMMATSCI.2021.110786

    Article  Google Scholar 

  29. J.M. Zhang, K.W. Xu, V. Ji, Strain-energy-driven abnormal grain growth in copper films on silicon substrates. J. Cryst. Growth 226(1), 168–174 (2001). https://doi.org/10.1016/S0022-0248(01)01376-8

    Article  ADS  Google Scholar 

  30. S. Bigl, C.O.W. Trost, S. Wurster, M.J. Cordill, D. Kiener, Film thickness dependent microstructural changes of thick copper metallizations upon thermal fatigue. J. Mater. Res. (2017). https://doi.org/10.1557/jmr.2017.199

    Article  Google Scholar 

  31. O. Glushko, M.J. Cordill, The driving force governing room temperature grain coarsening in thin gold films. Scr. Mater. 130, 42–45 (2017). https://doi.org/10.1016/J.SCRIPTAMAT.2016.11.012

    Article  Google Scholar 

  32. N. Moelans, B. Blanpain, P. Wollants, An introduction to phase-field modeling of microstructure evolution. Calphad Comput. Coupling Phase Diagrams Thermochem. 32(2), 268–294 (2008). https://doi.org/10.1016/j.calphad.2007.11.003

    Article  Google Scholar 

  33. I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields. Phys. D Nonlinear Phenom. 134(4), 385–393 (1999). https://doi.org/10.1016/S0167-2789(99)00129-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. I. Steinbach, Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009). https://doi.org/10.1088/0965-0393/17/7/073001

    Article  ADS  Google Scholar 

  35. S.G. Kim et al., Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E (2006). https://doi.org/10.1103/PhysRevE.74.061605

    Article  Google Scholar 

  36. G. Abrivard, E.P. Busso, S. Forest, B. Appolaire, Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. Phil. Mag. 92(28–30), 3618–3642 (2012). https://doi.org/10.1080/14786435.2012.713135

    Article  ADS  Google Scholar 

  37. L. Chen et al., An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput. Methods Appl. Mech. Eng. 285, 829–848 (2015). https://doi.org/10.1016/j.cma.2014.12.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. L. Zhao, P. Chakraborty, M.R. Tonks, I. Szlufarska, On the plastic driving force of grain boundary migration: a fully coupled phase field and crystal plasticity model. Comput. Mater. Sci. 128, 320–330 (2017). https://doi.org/10.1016/j.commatsci.2016.11.044

    Article  Google Scholar 

  39. A.M. Roy, Influence of interfacial stress on microstructural evolution in NiAl alloys. JETP Lett. 112(3), 173–179 (2020). https://doi.org/10.1134/S0021364020150023

    Article  ADS  Google Scholar 

  40. A.M. Roy, Formation and stability of nanosized, undercooled propagating intermediate melt during β → δ phase transformation in HMX nanocrystal. Europhysics Lett. 133(5), 56001 (2021). https://doi.org/10.1209/0295-5075/133/56001

    Article  ADS  Google Scholar 

  41. E. Fried, M.E. Gurtin, Dynamic solid-solid transitions with phase characterized by an order parameter. Phys. D Nonlinear Phenom. 72(4), 287–308 (1994). https://doi.org/10.1016/0167-2789(94)90234-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M. Tonks, P. Millett, Phase field simulations of elastic deformation-driven grain growth in 2D copper polycrystals. Mater. Sci. Eng. A 528(12), 4086–4091 (2011). https://doi.org/10.1016/j.msea.2011.02.007

    Article  Google Scholar 

  43. M. Ledbetter, H. Ogi, S. Kai, S. Kim, M. Hirao, Elastic constants of body-centered-cubic titanium monocrystals. J. Appl. Phys. 95(9), 4642–4644 (2004). https://doi.org/10.1063/1.1688445

    Article  ADS  Google Scholar 

  44. M. Jamshidian, G. Zi, T. Rabczuk, Phase field modeling of ideal grain growth in a distorted microstructure. Comput. Mater. Sci. 95, 663–671 (2014). https://doi.org/10.1016/j.commatsci.2014.08.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jafari.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Numerical implementation

Appendix: Numerical implementation

A semi-concurrent multi-scale time-integration method was used for the numerical implementation of the constitutive equations using Thamboraja and Jamshidian [2]. This multi-scale coupled MPF and finite element computational method is implemented in Abaqus standard finite element software by writing a UMAT subroutine. The details of the numerical algorithm for the time integration method are as follows:

The index λ represents the integration point of finite elements, where \(\lambda =1,2,\dots ,{\lambda }_{el}\) and \({\lambda }_{el}\) represent the total number of integration points of the finite elements. The index \(k=\mathrm{1,2},\dots ,\Omega\) is used to represent the grid points of RVE, where Ω represents the total number of grid points.

The quantity of a variable at the grid points of the RVE is the mesoscale quantity, whereas a quantity at finite element integration points is a macroscale quantity. The quantity # at the integration point of elements λ is represented as \({\#}^{\uplambda }\). The quantity # is displayed as \(\#^{\lambda ,\kappa }\) in the K-the point of the grid from the RVE attached to the integration point of the λ finite elements.

In the numerical algorithm process, we only track species at a grid point at that grid point and its nearby vicinity [2, 44]. The \({A}_{p}\) list represents a set containing species, which satisfy condition \({0<\xi }_{i}\le 1\) at the grid point and its nearest neighboring points. In addition, each member of the \({A}_{p}\) set is unique.

In this paragraph, the discussion is limited to the RVE attached to the integration point of the finite elements λ. The grid point number K in the RVE is labeled as\({ G}^{ \lambda ,\kappa }\), which is in position \((x_{1},{{x}}_{2},{{x}}_{3})\) in the reference configuration. Grid points in positions \((x_{1}+z, {{x}}_{2},{{x}}_{3})\), \((x_{1}-z, {{x}}_{2},{{x}}_{3})\), \((x_{1}, {{x}}_{2}+ z, {{x}}_{3})\), \((x_{1}, {{x}}_{2}- z , {{x}}_{3}),\) and\((x_{1}, {{x}}_{2}, {{x}}_{3}+ z)\), \((x_{1}, {{x}}_{2}, {{x}}_{3}- z)\) are known in the reference configuration as the neighboring grid points of \({G}^{ \lambda ,\kappa }\) where Z represents the uniform spacing of the grid. The grid point index for each of the neighboring grid points of \({G}^{ \lambda ,\kappa }\) is a member of the \({Z}^{ \lambda ,\kappa }\) set. Thus, the set \({Z}^{ \lambda ,\kappa }\) has six members, and the member number J from the set \({Z}^{ \lambda ,\kappa }\) with \(J=\mathrm{1,2},\dots ,6\) is represented as\({ Z}_{j}^{\lambda ,\kappa }\). Labels for each grid point, their coordinates in the reference configuration, and tags for their neighboring grid points are obtained from an external file.

In the time marching method, t donates the current time and \(\Delta t>0\) presents the time step and τ = t + ∆t. The Euler method is used to temporally integrate the grain growth equations.

The algorithm used for the time integration method is as follows:

Start the loop on all points of finite element integration points \(\lambda =1,{\lambda }_{el}\).

  • Given macroscale quantities: \({\overline{\mathbf{F}} }^{\lambda }\left(t\right),{\overline{\mathbf{T}} }^{\lambda }\left(\tau \right),{\overline{\theta }}^{\lambda }\left(t\right),{\overline{\theta }}^{\lambda }\left(\tau \right),{\overline{\mathbf{T}} }^{\lambda }\left(t\right)\), H.

  • Macroscale quantities to be updated: \(\left\{{\overline{\mathbf{T}} }^{\lambda }\left(\tau \right)\right\}\).

    Start the loop on all points of the grid of \(k=1,\Omega\).

  • Given mesoscale quantities: \(\left\{{\xi }_{i}^{\lambda ,k}\left(t\right),{A}_{p}^{\lambda ,k}\left(t\right),{Z}^{\lambda ,\kappa }\right\}\).

  • Mesoscale quantities to be updated: \(\left\{{\xi }_{i}^{\lambda ,k}\left(\tau \right),{A}_{p}^{\lambda ,k}\left(\tau \right)\right\}\).

  • Step 1: Determining the deformation gradient tensor at the mesoscale F(t) and F(τ):

    $${\mathbf{F}}\left( t \right) = {\overline{\mathbf{F}}}^{\lambda } \left( t \right) \quad {\text{and}} \quad{ }{\mathbf{F}}\left( \tau \right) = {\overline{\mathbf{F}}}^{\lambda } \left( \tau \right).$$
  • Step 2: Specifying the temperature on the mesoscale θ(t) and θ(τ)

    $$\theta \left( t \right) = \overline{\theta }^{\lambda } \left( t \right)\quad {\text{and}}\quad { }\theta \left( \tau \right) = \overline{\theta }^{\lambda } \left( \tau \right).$$
  • Step 3: Calculating the strain tensor at the mesoscale \({\mathbf{E}}_{i}\left(t\right)\) and \({\mathbf{E}}_{i}\left(\tau \right)\) for each \(i\epsilon {A}_{\xi }\) species:

    $${\mathbf{E}}_{i} \left( t \right) = \frac{1}{{2\left\{ {\left( {{\mathbf{F}}_{i} \left( t \right)} \right)^{T} {\mathbf{F}}_{i} \left( t \right) - {\mathbf{I}}} \right\}}},$$
    $${\mathbf{E}}_{i} \left( \tau \right) = \frac{1}{{2\left\{ {\left( {{\mathbf{F}}_{i} \left( \tau \right)} \right)^{T} {\mathbf{F}}_{i} \left( \tau \right) - {\mathbf{I}}} \right\}}}.$$
  • Step 4: Determining the set \({A}_{\xi }\) of species, which are present at the grid point and its immediate neighbors:

    $$A_{\xi } = \left[ { \cup_{j = 1}^{6} A_{p}^{{\lambda ,Z_{j}^{\lambda ,k} }} \left( t \right)} \right] \cup A_{p}^{\lambda ,k} \left( t \right).$$

    \({A}_{\xi }=1\) indicates no inter-species exchange or transfer and therefore step 11 should be performed after updating the set \({A}_{p}^{\lambda ,k}\left(\tau \right)={A}_{p}^{\lambda ,k}\left(t\right)\) in \({\xi }_{i}^{\lambda ,k}\left(\tau \right)={\xi }_{i}^{\lambda ,k}\left(t\right)\) for all \(i \in {A}_{p}^{\lambda ,k}\left(t\right)\) species.

  • Step 5: Calculating the free energies \({\psi }_{i}^{e}\left(t\right)\)، \({\psi }_{i}^{M}\left(t\right)\)، \({\psi }_{i}^{\theta }\left(t\right)\) on the mesoscale for each \(i\epsilon {A}_{\xi }\) species:

    $$\psi_{i}^{e} = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}{\overline{\mathbf{E}}}_{i} :{\text{c}}_{i} \left[ {{\overline{\mathbf{E}}}_{i} } \right],$$
    $$\psi_{i}^{M} \left( t \right) = \frac{1}{2}\mu_{0} H^{2} X_{i} ,$$
    $$\psi_{i}^{\theta } \left( t \right) = c_{i} \left[ {\left( {\theta \left( t \right) - \theta_{0} } \right) - \theta \left( t \right)\ln (\theta \left( t \right)/\theta_{0} } \right].$$
  • Step 6: Calculating the driving forces for \({f}_{i}^{\xi }\left(t\right)\) inter-species exchange for each \(i\epsilon {A}_{\xi }\) species:

    $$f_{i}^{\xi } \left( t \right) = f_{i}^{m} \left( t \right) + f_{i}^{e} \left( t \right) + f_{i}^{\theta } \left( t \right) + f_{i}^{M} \left( t \right),$$
    $$f_{i}^{m} \left( t \right) = - \mathop \sum \limits_{{s \in A_{\xi } }} \frac{{\epsilon_{is}^{\xi } }}{2}\nabla^{2} \xi_{i}^{\lambda ,k} \left( t \right) - \mathop \sum \limits_{{s \in A_{\xi } }} \omega_{is}^{\xi } \xi_{s}^{\lambda ,k} \left( t \right) \quad {\text{with}} \quad s \ne i,$$
    $$f_{i}^{e} \left( t \right) = \frac{{g^{\prime}\left( {\xi_{i}^{\lambda ,k} \left( t \right)} \right)\left[ {\mathop \sum \nolimits_{{s \in A_{\xi } }} g\left( {\xi_{s}^{\lambda ,k} \left( t \right)} \right)\left( {\psi_{s}^{e} \left( t \right) - \psi_{i}^{e} \left( t \right)} \right)} \right]}}{{\left[ {\mathop \sum \nolimits_{{s \in A_{\xi } }} g\left( {\xi_{s}^{\lambda ,k} \left( t \right)} \right)} \right]^{2} }},$$
    $$f_{i}^{\theta } \left( t \right) = \frac{{g^{\prime}\left( {\xi_{i}^{\lambda ,k} \left( t \right)} \right)\left[ {\mathop \sum \nolimits_{{s \in A_{\xi } }} g\left( {\xi_{s}^{\lambda ,k} \left( t \right)} \right)\left( {\psi_{s}^{\theta } \left( t \right) - \psi_{i}^{\theta } \left( t \right)} \right)} \right]}}{{\left[ {\mathop \sum \nolimits_{{s \in A_{\xi } }} g\left( {\xi_{s}^{\lambda ,k} \left( t \right)} \right)} \right]^{2} }},$$
    $$f_{i}^{M} \left( t \right) = \frac{{g^{\prime}\left( {\xi_{i}^{\lambda ,k} \left( t \right)} \right)\left[ {\mathop \sum \nolimits_{{s \in A_{\xi } }} g\left( {\xi_{s}^{\lambda ,k} \left( t \right)} \right)\left( {\psi_{s}^{M} \left( t \right) - \psi_{i}^{M} \left( t \right)} \right)} \right]}}{{\left[ {\mathop \sum \nolimits_{{s \in A_{\xi } }} g\left( {\xi_{s}^{\lambda ,k} \left( t \right)} \right)} \right]^{2} }}.$$

    It is worth noting that \({\xi }_{s}^{\lambda ,k}\left(t\right)=0\) if \(i\notin {A}_{p}^{\lambda ,k}\left(t\right)\). The finite difference method is used to calculate the second-order gradient of the MPF variables \({\nabla }^{2}{\xi }_{s}^{\lambda ,\kappa }(t)\) [44].

    $$\nabla^{2} \xi_{s}^{\lambda ,\kappa } \left( t \right) = \frac{{\left[ {\mathop \sum \nolimits_{j = 1}^{6} \xi_{s}^{{\lambda ,z_{j}^{\lambda ,\kappa } }} \left( t \right)} \right] - 6\xi_{s}^{\lambda ,\kappa } \left( t \right)}}{{z^{2} }}.$$
  • Step 7a: Calculating the total driving force for the inter-species exchange (\({f}_{pq}\left(t\right))\) for the species \(p,q\in {A}_{\xi }\) with p < q:

    $$f_{pq} \left( t \right) = f_{p}^{\xi } \left( t \right) - f_{q}^{\xi } \left( t \right).$$
  • Step 7b: Calculating the inter-species transfer rate \({\Delta \xi }_{pq}\) for \(p,q\in {A}_{\xi }\) species with p < q:

    If \(\left|{f}_{pq}(t)\right|>{f}_{pq}^{\xi ,c},\) then, we have:

    $$\Delta \xi_{pq} = L_{pq}^{\xi } \left( t \right)f_{pq} \left( t \right)\Delta t.$$

    where the coefficients of mobility \({\widehat{{\varvec{L}}}}_{{\varvec{p}}{\varvec{q}}}^{{\varvec{\xi}}}({\varvec{\theta}}({\varvec{t}}))\) \(=\) \({{\varvec{L}}}_{{\varvec{p}}{\varvec{q}}}^{{\varvec{\xi}}}({\varvec{t}})\).

    If \(\left|{{\varvec{f}}}_{{\varvec{p}}{\varvec{q}}}({\varvec{t}})\right|<{{\varvec{f}}}_{{\varvec{p}}{\varvec{q}}}^{{\varvec{\xi}},{\varvec{c}}}\), then, we have:

    $$\Delta \xi_{pq} = 0.$$

    The set \({A}_{\xi }\) contains the quantities \({\Delta \xi }_{pq}\ne 0\) for the species \(p,q\in {A}_{\xi }\) with p < q. If \({A}_{\xi }=\varnothing\), then \({\xi }_{i}^{\lambda ,k}\left(\tau \right)={\xi }_{i}^{\lambda ,k}\left(t\right)\) for each species is \(i \epsilon { A}_{p}^{\lambda ,k}\left(t\right)\); then, the set \({A}_{p}^{\lambda ,k}\left(\tau \right)={A}_{p}^{\lambda ,k}\left(t\right)\) is updated and then we proceed with step 11.

  • Step 8: Updating the VF of the species (\({\xi }_{i}^{\lambda ,k}\left(\tau \right))\) for each species \(i\in {A}_{\xi }\):

    $$\xi_{i}^{\lambda ,k} \left( \tau \right) = \xi_{i}^{\lambda ,k} \left( t \right) + \mathop \sum \limits_{p < q} K_{ipq} \Delta \xi_{pq} , \quad p,q \in A_{\xi } .$$

    If \({\xi }_{i}^{\lambda ,k}\left(\tau \right)>1\), then \({\xi }_{i}^{\lambda ,k}\left(\tau \right)=1\) and if \({\xi }_{i}^{\lambda ,k}\left(\tau \right)<0\), then \({\xi }_{i}^{\lambda ,k}\left(\tau \right)=0\).

  • Step 9: Updating the set \({A}_{p}^{\lambda ,k}\left(\tau \right)\) of the species, which satisfy the following conditions:

    $$0 < \xi_{i}^{\lambda ,k} \left( \tau \right) \le 1, \quad i \in A_{\xi } .$$
  • Step 10: Ensuring that the constraint \(\sum_{i\epsilon {A}_{p}^{\lambda ,k}(\tau )}{\xi }_{i}^{\lambda ,k}\left(\tau \right)=1\) is always satisfied by substituting:

    $$\xi_{i}^{\lambda ,k} \left( \tau \right) \quad {\text{with}} \quad \frac{{\xi_{i}^{\lambda ,k} \left( \tau \right)}}{{\mathop \sum \nolimits_{{s \in A_{p}^{\lambda ,k} \left( \tau \right)}} \xi_{s}^{\lambda ,k} \left( \tau \right)}}, \quad i \in A_{p}^{\lambda ,k} \left( \tau \right).$$
  • Step 11: Updating Cauchy stress at mesoscale, \({\mathrm{T}}^{\lambda ,k}(\tau )\):

    $${\mathbf{T}}^{{{\uplambda },{\text{k}}}} \left( {\uptau } \right) = \left( {{\text{det}}{\mathbf{F}}\left( {\uptau } \right)} \right)^{ - 1} {\mathbf{F}}\left( {\uptau } \right){\mathbf{T}}^{*} \left( {\uptau } \right)\left( {{\mathbf{F}}\left( {\uptau } \right)} \right)^{{\text{T}}} .$$

    where \({\mathrm{T}}^{*}\left(\tau \right)\) is the second Piola- Kirchhoff stress on the mesoscale:

    $${\mathbf{T}}^{*} \left( {\uptau } \right) = \frac{{\mathop \sum \nolimits_{{i \in A_{p}^{\lambda ,k} \left( \tau \right)}} g\left( {\xi_{i}^{\lambda ,\kappa } \left( \tau \right)} \right)\left\{ {C_{i} \left[ {{\mathbf{E}}\left( \tau \right) - \lambda_{i} \left( {\theta \left( \tau \right) - \theta_{0} } \right){\mathbf{I}}} \right]} \right\}}}{{\mathop \sum \nolimits_{{i \in A_{p}^{\lambda ,k} \left( \tau \right)}} g\left( {\xi_{i}^{\lambda ,\kappa } \left( \tau \right)} \right)}}.$$

The end of the loop is on all grid points of the RVE.

  • Step A: Updating Cauchy stress at macro scale using Eq. 19:

    $${\overline{\mathbf{T}}}^{\lambda } \left( \tau \right) = \frac{1}{{\Omega }}\mathop \sum \limits_{\kappa = 1}^{{\Omega }} {\mathbf{T}}^{\lambda ,k} \left( {\uptau } \right)$$
  • Step B: Determining the Jacobin matrix for the finite-element code Abaqus/Standard for Newton–Raphson iterations [2, 44].

The end of the loop is on finite element integration points.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, Y., Jafari, M., Hassanpour, A. et al. Multi-phase-field modeling of grain growth in polycrystalline titanium under magnetic field and elastic strain. Appl. Phys. A 128, 874 (2022). https://doi.org/10.1007/s00339-022-06008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06008-8

Keywords

Navigation