Log in

Flake-like oxygen-deficient lithium vanadium oxides as a high ionic and electronic conductive cathode material for high-power Li-ion battery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low electronic and ionic conductivity for LiV3O8 cathode material could lead to poor cycling stability and rate capability, which are considered as the main restraint for its application in Li-ion battery. A novel flake-like LiV3O7.9 material modified by high ionic and electronic conductive Li0.3V2O5/C was fabricated via electrospinning and controlled thermal sintering processes. This oxygen-deficient LiV3O7.9/Li0.3V2O5-C composite electrode sintered at 500 °C exhibits improved rate and cycle stability. The electrode possesses a retention capacity of 151.9mAh/g after 500 cycles at 5C and 84.8mAh/g after 1000 cycles at 10C, respectively. The improvement of the electrochemical performance could be attributed to the synergistic effects of flake-like morphology, oxygen-deficiency and surface modification of Li0.3V2O5/C, which increase the ionic and electronic conductivity of LiV3O8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Pan, H.B. Wu, L. Yu, X.W. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. Int. Edit. 125, 2282–2286 (2013)

    Article  Google Scholar 

  2. D. Chao, X. **a, J. Liu, Z.X. Fan, C.F. Ng, J.Y. Lin, H. Zhang, Z.X. Shen, H.J. .Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)

    Article  Google Scholar 

  3. J. Zheng, Y. Zhang, N.N. Wang, Y.F. Zhao, F.P. Tian, C.G. Meng, Facile synthesis and characterization of LiV3O8 with sheet-like morphology for high-performance supercapacitors. Mater. Lett. 171, 240–243 (2016)

    Article  Google Scholar 

  4. Z.X. Chen, F. Xu, S.A. Cao, Z.F. Li, H.X. Yang, X.P. Ai, Y.L. Cao, High rate, long lifespan LiV3O8 nanorods as a cathode material for lithium-ion batteries. Small 13, 1603148 (2017)

    Article  Google Scholar 

  5. H.Q. Li, X.Z. Liu, T.Y. Zhai, D. Li, H.S. Zhou, Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv. Energy Mater. 3, 428–432 (2013)

    Article  Google Scholar 

  6. C.K. Zhang, H.Q. Song, C.F. Liu, Y.G. Liu, C.P. Zhang, X.H. Nan, G.Z. Cao, Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv. Funct. Mater. 25, 3497–3504 (2015)

    Article  Google Scholar 

  7. M. J.Bao, X.D. Zhou, Y. Zeng, L. Bai, K. Zhang, Y. Xu, **e, Li0.3V2O5 with high lithium diffusion rate: a promising anode material for aqueous lithium-ion batteries with superior rate performance. J. Mater. Chem. A 1, 5423–5429 (2013)

    Article  Google Scholar 

  8. H.X. Meng, L.Q. Li, J.Q. Liu, X.P. Han, W.G. Zhang, X.J. Liu, Q. Xu, Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10 Mn 0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries. J. Alloy. Compd. 690, 256–266 (2017)

    Article  Google Scholar 

  9. M. Onoda, The crystal structures and quasi-one-dimensional electronic properties of Ag1+ xV3O8 and Na1+ xV3O8. J. Phy. Condens. Mat. 16, 8957 (2004)

    Article  ADS  Google Scholar 

  10. R. Ramaraghavulu, K. Sivaiah, S. Buddhudu, Structural and dielectric properties of LiV3O8 ceramic powders. Ferroelectrics 432, 55–64 (2012)

    Article  Google Scholar 

  11. Q. Shi, R. Hu, M. Zeng, M. Zhu, A diffusion kinetics study of Li-ion in LiV3O8 thin film electrode. Electrochim. Acta 55, 6645–6650 (2010)

    Article  Google Scholar 

  12. S.H. Choi, Y.C. Kang, Excellent electrochemical properties of yolk-shell LiV3O8 powder and its potential as cathodic material for lithium-ion batteries. Chem. Eur. J. 19, 17305–17309 (2013)

    Article  Google Scholar 

  13. S.H. Ju, Y.C. Kang, Morphological and electrochemical properties of LiV3O8 cathode powders prepared by spray pyrolysis. Electrochim. Acta 55, 6088–6092 (2010)

    Article  Google Scholar 

  14. T.J. Patey, S.H. Ng, R. Buechel, N. Tran, F. Krumeich, J. Wang, H.K. Liu, P. Novak, Electrochemistry of LiV3O8 nanoparticles made by flame spray pyrolysis. Electrochem. Solid ST. 11, A46-A50 (2008)

    Article  Google Scholar 

  15. S. Huang, X.L. Wang, Y. Lu, X.M. Jian, X.Y. Zhao, H. Tang, J.B. Cai, C.D. Gu, J.P. Tu, Facile synthesis of cookies-shaped LiV3O8 cathode materials with good cycling performance for lithium-ion batteries. J.Alloy. Compd. 584, 41–46 (2014)

    Article  Google Scholar 

  16. H. Ma, Z.Q. Yuan, F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Synthesis and electrochemical properties of porous LiV3O8 as cathode materials for lithium-ion batteries. J. Alloy. Compd. 509, 6030–6035 (2011)

    Article  Google Scholar 

  17. D. Wang, L. Cao, J. Huang, J. Wu, Synthesis and electrochemical properties of LiV3O8 via an improved sol–gel process. Ceram. Int. 38, 2647–2652 (2012)

    Article  Google Scholar 

  18. Y.G. Liu, H.Q. Song, C.P. Zhang, X.H. Nan, C.F. Liu, G.Z. Cao, Nickel-doped lithium trivanadate nanosheets synthesized by hydrothermal synthesis as high performance cathode materials for lithium ion batteries. Sci. Adv. Mater. 8, 703–711 (2016)

    Article  Google Scholar 

  19. H.Y. Xu, H. Wang, Z.Q. Song, Y.W. Wang, H. Yan, M. Yoshimura, Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim. Acta 49, 349–353 (2004)

    Article  Google Scholar 

  20. J. Xu, H. Zhang, T. Zhang, Q.Y. Pan, Y.H. Cui, Influence of heat-treatment temperature on crystal structure, morphology and electrochemical properties of LiV3O8 prepared by hydrothermal reaction. J.Alloy. Compd. 467, 327–331 (2009)

    Article  Google Scholar 

  21. G. Yang, G. Wang, W. Hou, Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries. J. Phys. Chem. B109, 11186–1119 (2005)

    Article  Google Scholar 

  22. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, X.H. Li, L.D. Wang, X.H. Li, Multishelled metal oxide hollow spheres:easy synthesis and formation mechanism. Chem. Eur. J. 22, 8864–8871 (2016)

    Article  Google Scholar 

  23. M. Qin, Q. Shuai, G.L. Wu, B.H. Zheng, Z.D. Wang, H.J. Wu, Zinc ferrite composite material with controllable morphology and its applications. Mater. Sci. Eng. B224, 125–138 (2017)

    Article  Google Scholar 

  24. S.H. Qu, Y.H. Yu, K.J. Lin, P.Y. Liu, C.H. Zheng, L.D. Wang, T.T. Xu, Z.D. Wang, H.J. Wu, Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. J. Mater. Sci. 29, 1232–1237 (2018)

    Google Scholar 

  25. H.Q. Song, Y.G. Liu, C.P. Zhang, C.F. Liu, G.Z. Cao, Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J. Mater. Chem. A 3, 3547–3558 (2015)

    Article  Google Scholar 

  26. L. Chen, X.L. Jiang, N.N. Wang, J. Yue, Y.T. Qian, J. Yang, Surface-amorphous and oxygen-deficient Li3VO4– δ as a promising anode material for lithium-ion batteries. Adv. Sci. 2, 1500090 (2015)

    Article  Google Scholar 

  27. H. Wang, D. Ma, Y. Huang, X.B. Zhang, Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem. A Eur. J. 18, 8987–8993 (2012)

    Article  Google Scholar 

  28. N.H. Idris, M.M. Rahman, J.Z. Wang, Z.X. Chen, H.K. Liu, Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries. Compos. Sci. Technol 71, 343–349 (2011)

    Article  Google Scholar 

  29. Y. Feng, Y. Li, F. Hou, Boron doped lithium trivanadate as a cathode material for an enhanced rechargeable lithium ion batteries. J. Power Sources 187, 224–228 (2009)

    Article  ADS  Google Scholar 

  30. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)

    Article  Google Scholar 

  31. Y.K. Yu, S.H. Qu, D.Y. Zang, L.D. Wang, H.J. Wu, Fast synthesis of Pt nanocrystals and Pt/ microporous La2O3 materials using acoustic levitation. Nanoscale Res. Lett. 13, 50 (2018)

    Article  ADS  Google Scholar 

  32. Y.H. Zhang, P. **ao, X. Zhou, D. Liu, B.B. Garcia, G.Z. Cao, Carbon monoxide annealed TiO2 nanotube array electrodes for efficient biosensor applications. J. Mater. Chem. 19, 948–953 (2009)

    Article  Google Scholar 

  33. Y.W. Li, J.H. Yao, E. Uchaker, M. Zhang, J.J. Tian, X.Y. Liu, G.Z. Cao, Sn-doped V2O5 film with enhanced lithium-ion storage performance. J. Phys. Chem. C 117, 23507–23514 (2013)

    Article  Google Scholar 

  34. P. Gomez-Romero, Hybrid organic-inorganic materials-in search of synergic activity. Adv. Mater. 13, 163–174 (2001)

    Article  Google Scholar 

  35. I. Boyano, M. Bengoechea, I. de Meatza, O. Miguel, I. Cantero, E. Ochoteco, J. Rodríguez, M. Lira-Cantú, P. Gómez-Romero, Improvement in the Ppy/V2O5 hybrid as a cathode material for Li ion batteries using PSA as an organic additive. J. Power Sources 166, 471–477 (2007)

    Article  ADS  Google Scholar 

  36. C.J. Niu, J.S. Meng, X.P. Wang, C.H. Han, M.Y. Yan, K.N. Zhao, X.M. Xu, W.H. Ren, Y.L. Zhao, L. Xu, Q.J. Zhang, D.Y. Zhao, L.Q. Mai, General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7402 (2015)

    Article  ADS  Google Scholar 

  37. A. Pan, J. Zhang, G. Cao, S. Liang, C. Wang, Z. Nie, B.W. Arey, W. Xu, D.W. Liu, J. **ao, G.S. Li, J. Liu, Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. J. Mater. Chem. 21, 10077–10084 (2011)

    Article  Google Scholar 

  38. S. Sarkar, H. Banda, S. Mitra, High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim. Acta 99, 242–252 (2013)

    Article  Google Scholar 

  39. S. Huang, J.P. Tu, X.M. Jian, Y. Lu, S.J. Shi, X.Y. Zhao, T.Q. Wang, X.L. Wang, C.D. Gu, Enhanced electrochemical properties of Al2O3-coated LiV3O8 cathode materials for high-power lithium-ion batteries. J. Power Sources 245, 698–705 (2014)

    Article  ADS  Google Scholar 

  40. J. Kawakita, M. Majima, T. Miura, T. Kishi, Preparation and lithium insertion behaviour of oxygen-deficient Li1+ xV3O8–δ. J. Power Sources 66, 135–139 (1997)

    Article  ADS  Google Scholar 

  41. S. Caes, J.C. Arrebola, N. Krins, P. Eloy, E.M. Gaigneaux, C. Henrist, R. Cloots, B. Vertruyen, Mesoporous lithium vanadium oxide as a thin film electrode for lithium-ion batteries: comparison between direct synthesis of LiV2O5 and electrochemical lithium intercalation in V2O5. J. Mater. Chem. A 2, 5809–5815 (2014)

    Article  Google Scholar 

  42. G.H. D.Sun, H.Y. **, X.B. Wang, Y. Huang, J.C. Ren, H.N. Jiang, Y.G. He, Tang, LixV2O5/ LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batteries. J. Mater. Chem. A 2, 8009–8016 (2014)

    Article  Google Scholar 

  43. Y.G. Tang, D. Sun, H.Y. Wang, X.B. Huang, H. Zhang, S.Q. Liu, Y.N. Liu, Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Adv. 4, 8328–8334 (2014)

    Article  Google Scholar 

  44. H. Song, M. Luo, A. Wang, High rate and stable Li-ion insertion in oxygen-deficient LiV3O8 nanosheets as a cathode material for lithium-ion battery. ACS Appl. Mater. Inter. 9, 2875–2882 (2017)

    Article  Google Scholar 

  45. D.W. Liu, Y.Y. Liu, A.Q. Pan, K.P. Nagle, G.T. Seidler, Y.H. Jeong, G.Z. Cao, Enhanced lithium-ion intercalation properties of V2O5 xerogel electrodes with surface defects. J. Phys. Chem. C 115, 4959–4965 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (Grant no. 51474113, 51504101), the Natural Science Foundation of Jiangsu Province (Grant no. BK20150514), the Natural Science Research Program of Jiangsu Province Higher Education of China (Grant no. 14KJB430010). And we also thank the sponsorship of Jiangsu Overseas Research and Training Program for University Young and Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-xiang **g.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 329 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jq., Han, C., **g, Mx. et al. Flake-like oxygen-deficient lithium vanadium oxides as a high ionic and electronic conductive cathode material for high-power Li-ion battery. Appl. Phys. A 124, 450 (2018). https://doi.org/10.1007/s00339-018-1863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1863-3

Navigation