Log in

A pure nanoICG-based homogeneous lipiodol formulation: toward precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Correction to this article was published on 12 May 2022

This article has been updated

Abstract

Purpose

To surmount the critical issues of indocyanine green (ICG), and thus achieving a precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization.

Methods

In this study, a facile and green pure-nanomedicine formulation technology is developed to construct carrier-free indocyanine green nanoparticles (nanoICG), and which subsequently dispersed into lipiodol via a super-stable homogeneous lipiodol formulation technology (SHIFT nanoICG) for transcatheter arterial embolization combined near-infrared fluorescence-guided precise hepatectomy.

Results

SHIFT nanoICG integrates excellent anti-photobleaching capacity, great optical imaging property, and specific tumoral deposition to recognize tumor regions, featuring entire-process enduring fluorescent-guided precise hepatectomy, especially in resection of the indiscoverable satellite lesions (0.6 mm × 0.4 mm) in rabbit bearing VX2 orthotopic hepatocellular carcinoma models.

Conclusion

Such a simple and effective strategy provides a promising avenue to address the clinical issue of clinical hepatectomy and has excellent potential for a translational pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Siegel R, Miller K, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Shi X, Zhang Y, Tian Y, Xu S, Ren E, Bai S, et al. Multi‐responsive bottlebrush‐like unimolecules self‐assembled nano‐riceball for synergistic sono‐chemotherapy. Small Methods 2020;5:2000416. https://doi.org/10.1002/smtd.202000416.

  3. Zhang Y, Wang X, Chu C, Zou Z, Chen B, Pang X, et al. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat Commun. 2020;11:5421. https://doi.org/10.1038/s41467-020-19061-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun T, Han J, Liu S, Wang X, Wang Z, **e Z. Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano. 2019;13:7345–54. https://doi.org/10.1021/acsnano.9b03910.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu J, Chu C, Li D, Pang X, Zheng H, Wang J, et al. Fe(III)-porphyrin sonotheranostics: a green triple-regulated ROS generation nanoplatform for enhanced cancer imaging and therapy. Adv Funct Mater. 2019;29:1904056. https://doi.org/10.1002/adfm.201904056.

    Article  CAS  Google Scholar 

  6. Vibert E, Schwartz M, Olthoff K. Advances in resection and transplantation for hepatocellular carcinoma. J Hepatol. 2020;72:262–76. https://doi.org/10.1016/j.jhep.2019.11.017.

    Article  CAS  PubMed  Google Scholar 

  7. Savic L, Schobert I, Peters D, Walsh J, Laage-Gaupp F, Hamm C, et al. Molecular imaging of extracellular tumor pH to reveal effects of locoregional therapy on liver cancer microenvironment. Clin Cancer Res. 2020;26:428–38. https://doi.org/10.1158/1078-0432.CCR-19-1702.

    Article  CAS  PubMed  Google Scholar 

  8. Aufhauser D, Sadot E, Murken D, Eddinger K, Hoteit M, Abt P, et al. Incidence of occult intrahepatic metastasis in hepatocellular carcinoma treated with transplantation corresponds to early recurrence rates after partial hepatectomy. Ann Surg. 2018;267:922–8. https://doi.org/10.1097/SLA.0000000000002135.

    Article  PubMed  Google Scholar 

  9. Dai Q, Ren E, Xu D, Zeng Y, Liu G. Indocyanine green-based nanodrugs: a portfolio strategy for precision medicine. Prog Nat Sci. 2020;30:577–88. https://doi.org/10.1016/j.pnsc.2020.08.002.

    Article  CAS  Google Scholar 

  10. Lu H, Gu J, Qian X, Dai X. Indocyanine green fluorescence navigation in laparoscopic hepatectomy: a retrospective single-center study of 120 cases. Surg Today. 2021;51:695–702. https://doi.org/10.1007/s00595-020-02163-8.

    Article  CAS  PubMed  Google Scholar 

  11. Lin H, Li S, Wang J, Chu C, Zhang Y, Pang X, et al. A single-step multi-level supramolecular system for cancer sonotheranostics. Nanoscale Horiz. 2019;4:190–5. https://doi.org/10.1039/c8nh00276b.

    Article  CAS  PubMed  Google Scholar 

  12. Lin G, Zhang Y, Zhang L, Wang J, Tian Y, Cai W, et al. Metal-organic frameworks nanoswitch: toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020;13:238–45. https://doi.org/10.1007/s12274-019-2606-2.

    Article  CAS  Google Scholar 

  13. Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C, et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv Mater. 2018;30:1705350. https://doi.org/10.1002/adma.201705350.

    Article  CAS  Google Scholar 

  14. Chu C, Ren E, Zhang Y, Yu J, Lin H, Pang X, et al. Zinc(II)-dipicolylamine coordination nanotheranostics: toward synergistic nanomedicine by combined photo/gene therapy. Angew Chem Int Ed Engl. 2019;58:269–72. https://doi.org/10.1002/anie.201812482.

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Kankala R, Zhang Y, **ang S, Tang H, Wang Q, et al. Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression. Chem Eng J. 2020;390: 124312. https://doi.org/10.1016/j.cej.2020.124312.

    Article  CAS  Google Scholar 

  16. Kankala R, Zhang Y, Wang S, Lee C, Chen A. Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv Healthc Mater. 2017;6:1700433. https://doi.org/10.1002/adhm.201700433.

    Article  CAS  Google Scholar 

  17. Palmer D, Malagari K, Kulik L. Role of locoregional therapies in the wake of systemic therapy. J Hepatol. 2020;72:277–87. https://doi.org/10.1016/j.jhep.2019.09.023.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Cheng H, Wu W, Li D, Mao J, Chu C, et al. The blooming intersection of transcatheter hepatic artery chemoembolization and nanomedicine. Chinese Chem Lett. 2020;6:1375–81. https://doi.org/10.1016/j.cclet.2020.03.024.

    Article  CAS  Google Scholar 

  19. Lanza E, Donadon M, Poretti D, Pedicini V, Tramarin M, Roncalli M, et al. Transarterial therapies for hepatocellular carcinoma. Liver Cancer. 2016;6:27–33. https://doi.org/10.1159/000449347.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim D, Lee J, Moon H, Seo M, Lee J, Hong S, et al. Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model. Theranostics. 2021;11:79–92. https://doi.org/10.7150/thno.45348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Renzulli M, Peta G, Vasuri F, Marasco G, Caretti D, Bartalen L, et al. Standardization of conventional chemoembolization for hepatocellular carcinoma. Ann Hepatol. 2021;5: 100278. https://doi.org/10.1016/j.aohep.2020.10.006.

    Article  CAS  Google Scholar 

  22. Savic L, Chapiro J, Funai E, Bousabarah K, Schobert I, Isufi E, et al. Prospective study of lipiodol distribution as an imaging marker for doxorubicin pharmacokinetics during conventional transarterial chemoembolization of liver malignancies. Eur Radiol. 2021;31:3002–14. https://doi.org/10.1007/s00330-020-07380-w.

    Article  CAS  PubMed  Google Scholar 

  23. Li A, Chan S, Thung KH. Pre-operative CT localization for patients with subsolid opacities expecting video-assisted thoracoscopic surgery-single center experience of fluorescent iodized emulsion and hook-wire localization technique. Br J Radiol. 2020;93:20190938. https://doi.org/10.1259/bjr.20190938.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rho J, Lee J, Quan Y, Choi B, Shin B, Han K, et al. Fluorescent and iodized emulsion for preoperative localization of pulmonary nodules. Ann Surg. 2019;5:989–96. https://doi.org/10.1097/SLA.0000000000003300.

    Article  Google Scholar 

  25. Chen H, Cheng H, Dai Q, Cheng Y, Zhang Y, et al. A superstable homogeneous lipiodol-ICG formulation for locoregional hepatocellular carcinoma treatment. J Control Release. 2020;323:635–43. https://doi.org/10.1016/j.jconrel.2020.04.021.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng H, Yang X, Liu G. Superstable homogeneous iodinated formulation technology: revolutionizing transcatheter arterial chemoembolization. Sci Bull. 2020;65:1685–7. https://doi.org/10.1016/j.scib.2020.06.029.

    Article  CAS  Google Scholar 

  27. Gao Y, Li Z, Hong Y, Li T, Hu X, Sun L, et al. Decellularized liver as a translucent ex vivo model for vascular embolization evaluation. Biomaterials. 2020;240: 119855. https://doi.org/10.1016/j.biomaterials.2020.119855.

    Article  CAS  PubMed  Google Scholar 

  28. Shi Z, Chu C, Zhang Y, Su Z, Lin H, Pang X, et al. Self-assembled metal-organic nanoparticles for multimodal imaging-guided photothermal therapy of hepatocellular carcinoma. J Biomed Nanotechnol. 2018;14:1934–43. https://doi.org/10.1166/jbn.2018.2636.

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Li X, Tse B, Yang H, Thorling C, Liu Y, et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics. 2018;8:1227–42. https://doi.org/10.7150/thno.22872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li F, Li T, Cao W, Wang L, Xu H. Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment. Biomaterials. 2017;133:208–18. https://doi.org/10.1016/j.biomaterials.2017.04.032.

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka T, Masada T, Nishiofuku H, Fukuoka Y, Sato T, Tatsumoto S, et al. Development of pum** emulsification device with glass membrane to form ideal lipiodol emulsion in transarterial chemoembolization. Eur Radiol. 2018;28:2203–7. https://doi.org/10.1007/s00330-017-5197-x.

    Article  PubMed  Google Scholar 

  32. Du J, Li H, Wang J. Tumor-acidity-cleavable maleic acid amide (TACMAA): a powerful tool for designing smart nanoparticles to overcome delivery barriers in cancer nanomedicine. Acc Chem Res. 2018;51:2848–56. https://doi.org/10.1021/acs.accounts.8b00195.

    Article  CAS  PubMed  Google Scholar 

  33. Miyashiro I, Kishi K, Yano M, Tanaka K, Motoori M, Ohue M, et al. Laparoscopic detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging. Surg Endosc. 2011;25:1672–6. https://doi.org/10.1007/s00464-010-1405-3.

    Article  PubMed  Google Scholar 

  34. Lei Y, Zeng L, **e S, Fan K, Yu Y, Chen J, et al. Sertraline/ICG-loaded liposome for dual-modality imaging and effective chemo-photothermal combination therapy against metastatic clear cell renal cell carcinoma. Chem Biol Drug Des. 2020;95:320–31. https://doi.org/10.1111/cbdd.13652.

    Article  CAS  PubMed  Google Scholar 

  35. Fontoura OA, Ferreira H. Neovagina creation in congenital vaginal agenesis: new mini-laparoscopic approach applying intraoperative indocyanine green fluorescence. Surg Innov. 2020;2:1–9. https://doi.org/10.1177/1553350620968990.

    Article  Google Scholar 

  36. Lieto E, Galizia G, Cardella F, Mabilia A, Basile N, Castellano P, et al. Indocyanine green fluorescence imaging-guided surgery in primary and metastatic liver tumors. Surg Innov. 2018;25:62–8. https://doi.org/10.1177/1553350617751451.

    Article  PubMed  Google Scholar 

  37. Yu Y, Ngo VH, ** G, Tran P, Tran T, Nguyen VH, et al. Double-controlled release of poorly water-soluble paliperidone palmitate from self-assembled albumin-oleic acid nanoparticles in PLGA in situ forming implant. Int J Nanomedicine. 2021;16:2819–31. https://doi.org/10.2147/IJN.S302514.eCollection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Major State Basic Research Development Program of China (2017YFA0205201), the National Natural Science Foundation of China (81925019, 81422023, 81603015, 81871404, and U1705281), the Fundamental Research Funds for the Central Universities (20720190088, 20720200019, and 2020Y4003), China Postdoctoral Science Foundation (2021M702739), the Science and Technology Project of **amen municipal Bureau of Science and Technology (3502Z20194044), and the Program for New Century Excellent Talents in University, China (NCET-13–0502).

Author information

Authors and Affiliations

Authors

Contributions

Y. Z. and G. Liu conceived and designed the experiments. Y. Z., H. Cheng, H. Chen, P. X., E. R., Y. J., X.G., D.L., J. M., and Y. Z. performed the experiments. Y. Z., B.-Q. C., P. H., H. L., and A. C. analyzed the results. Y. Z., H. Cheng, G. Lin, C. C., J. M., and G. Liu wrote the manuscript. G. Liu supervised the entire project.

Corresponding authors

Correspondence to Chengchao Chu, **gsong Mao or Gang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Theragnostic

The original online version of this article was revised: The authors regret that the version of Figure 2 that appears in the original article is incorrect.

The correct figure appears below.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.84 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cheng, H., Chen, H. et al. A pure nanoICG-based homogeneous lipiodol formulation: toward precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. Eur J Nucl Med Mol Imaging 49, 2605–2617 (2022). https://doi.org/10.1007/s00259-021-05654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05654-z

Keywords

Navigation