Log in

Quantization of Virtual Grothendieck Rings and Their Structure Including Quantum Cluster Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The quantum Grothendieck ring of a certain category of finite-dimensional modules over a quantum loop algebra associated with a complex finite-dimensional simple Lie algebra \(\mathfrak {g}\) has a quantum cluster algebra structure of skew-symmetric type. Partly motivated by a search of a ring corresponding to a quantum cluster algebra of skew-symmetrizable type, the quantum virtual Grothendieck ring, denoted by \(\mathfrak {K}_q(\mathfrak {g})\), is recently introduced by Kashiwara and Oh (Math Z 303(2):42, 2023) as a subring of the quantum torus based on the (qt)-Cartan matrix specialized at \(q=1\). In this paper, we prove that \(\mathfrak {K}_q(\mathfrak {g})\) indeed has a quantum cluster algebra structure of skew-symmetrizable type. This task essentially involves constructing distinguished bases of \(\mathfrak {K}_q(\mathfrak {g})\) that will be used to make cluster variables and generalizing the quantum T-system associated with Kirillov–Reshetikhin modules to establish a quantum exchange relation of cluster variables. Furthermore, these distinguished bases naturally fit into the paradigm of Kazhdan–Lusztig theory and our study of these bases leads to some conjectures on quantum positivity and q-commutativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. In the main body of this paper, we sometimes call it t-character by replacing the role of q by t.

  2. Our convention is a variation of the Coxeter–Dynkin diagram in the sense that we connect vertices with single edges only. See the examples for the finite types. We will call them Dynkin diagrams for simplicity.

  3. In [47, 48], \(\underline{\widetilde{\textsf{B}}}\) and \(\widetilde{\textsf{b}}\) are used instead of \(\widetilde{\underline{\textsf{R}}}\) and \(\widetilde{\textsf{r}}\), respectively.

  4. Visually, they are slant.

  5. When we replace valued arrows with usual arrows, it is the usual repetition quiver \(\widehat{\triangle }\) (see [47] for non-simply-laced types).

  6. It is usually called the q-character homomorphism in the literature.

  7. In our introduction, we use \(\overline{\mathcal {K}}_{1,\texttt{t},d}(\mathfrak {g})\) instead.

References

  1. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165(3), 555–568 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  2. Beilinson, A., Bernstein, J.: Localisation de \(g\)-modules. C. R. Acad. Sci. Paris Sér. I Math. 292(1), 15–18 (1981)

    MathSciNet  Google Scholar 

  3. Beilinson, A., Bernstein, J.: A proof of Jantzen conjectures. I. M. Gelcprime fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, pp. 1–50 (1993)

  4. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bittmann, L.: A quantum cluster algebra approach to representations of simply laced quantum affine algebras. Math. Z. 298(3–4), 1449–1485 (2021)

    Article  MathSciNet  Google Scholar 

  6. Brylinski, J.-L., Kashiwara, M.: Kazhdan–Lusztig conjecture and holonomic systems. Invent. Math. 64(3), 387–410 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chari, V., Pressley, A.: Quantum affine algebras and their representations. Representations of groups (Banff, AB, 1994) 16, 59–78 (1995)

  8. Chari, V., Pressley, A., et al.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  9. Coleman, A.J.: Killing and the Coxeter transformation of Kac–Moody algebras. Invent. Math. 95(3), 447–477 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. Drinfeld, V.G.: A new realization of yangians and of quantum affine algebras. Doklady Akademii Nauk, vol. 296, Russian Academy of Sciences, pp. 13–17 (1987)

  11. Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), American Mathematic Society, Providence, RI, pp. 798–820 (1987)

  12. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  Google Scholar 

  13. Frenkel, E., Hernandez, D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)

    Article  MathSciNet  Google Scholar 

  14. Frenkel, E., Hernandez, D., Reshetikhin, N.: Folded quantum integrable models and deformed \(W\)-algebras. Lett. Math. Phys. 112 (2022)

  15. Frenkel, E., Mukhin, E.: Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216(1), 23–57 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. Frenkel, E., Reshetikhin, N.: Deformations of W-algebras associated to simple Lie algebras. Commun. Math. Phys. 197(1), 1–32 (1998)

    Article  MathSciNet  Google Scholar 

  17. Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \(\mathscr {W}\)-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, American Mathematical Society, Providence, RI, pp. 163–205 (1999)

  18. Fujita, R., Hernandez, D., Oh, S., Oya, H.: Isomorphisms among quantum Grothendieck rings and propagation of positivity. J. Reine Angew. Math. 785, 117–185 (2022)

    Article  MathSciNet  Google Scholar 

  19. Fujita, R., Hernandez, D., Oh, S., Oya, H.: Isomorphisms among quantum Grothendieck rings and cluster algebras. ar**v preprint. ar**v:2304.02562 (2023)

  20. Fujita, R., Murakami, K.: Deformed Cartan matrices and generalized preprojective algebras I: Finite type. Int. Math. Res. Not. IMRN, rnac054 (2022)

  21. Fujita, R., Oh, S.: Q-data and representation theory of untwisted quantum affine algebras. Commun. Math. Phys. 384(2), 1351–1407 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Geiß, C., Leclerc, B., Schröer, J.: Cluster structures on quantum coordinate rings. Selecta Math. (N.S.) 19(2), 337–397 (2013)

    Article  MathSciNet  Google Scholar 

  23. Goodearl, K., Yakimov, M.: Quantum cluster algebra structures on quantum nilpotent algebras. Mem. Am. Math. Soc. 247(1169), vii+119 (2017)

    MathSciNet  Google Scholar 

  24. Hernandez, D.: \(t\)-analogues des opérateurs d’écrantage associés aux \(q\)-caractères. Int. Math. Res. Not., (8), 451–475 (2003)

  25. Hernandez, D.: Algebraic approach to \(q, t\)-characters. Adv. Math. 187(1), 1–52 (2004)

    Article  MathSciNet  Google Scholar 

  26. Hernandez, D.: Monomials of \(q\) and \(q, t\)-characters for non simply-laced quantum affinizations. Math. Z. 250(2), 443–473 (2005)

    Article  MathSciNet  Google Scholar 

  27. Hernandez, D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MathSciNet  Google Scholar 

  28. Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154(2), 265–341 (2010)

    Article  MathSciNet  Google Scholar 

  29. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    Article  MathSciNet  Google Scholar 

  30. Hernandez, D., Leclerc, B.: A cluster algebra approach to \(q\)-characters of Kirillov–Reshetikhin modules. J. Eur. Math. Soc. (JEMS) 18(5), 1113–1159 (2016)

    Article  MathSciNet  Google Scholar 

  31. Hernandez, D., Oya, H.: Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan–Lusztig algorithm. Adv. Math. 347, 192–272 (2019)

    Article  MathSciNet  Google Scholar 

  32. Humphreys, J.E.: Reflection Groups and Coxeter Groups, no. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  33. Jang, I.-S., Lee, K.-H., Oh, S.: Braid group action on quantum virtual grothendieck ring through constructing presentations. ar**v:2305.19471

  34. Jimbo, M.: Quantum \(R\) matrix for the generalized Toda system. Commun. Math. Phys. 102(4), 537–547 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  35. Kac, V.G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  36. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras, II. Duke Math. J. 164(8), 1549–1602 (2015)

    Article  MathSciNet  Google Scholar 

  37. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.: Simplicity of heads and socles of tensor products. Compos. Math. 151(2), 377–396 (2015)

    Article  MathSciNet  Google Scholar 

  39. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.: Monoidal categorification of cluster algebras. J. Am. Math. Soc. 31(2), 349–426 (2018)

    Article  MathSciNet  Google Scholar 

  40. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal envelo** algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  Google Scholar 

  41. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)

    Article  MathSciNet  Google Scholar 

  42. Kashiwara, M.: Crystal bases and categorifications—Chern Medal lecture. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, World Sci. Publ., Hackensack, NJ, pp. 249–258 (2018)

  43. Kashiwara, M., Kim, M., Oh, S.: Monoidal categories of modules over quantum affine algebras of type A and B. Proc. Lond. Math. Soc. 118(1), 43–77 (2019)

    Article  MathSciNet  Google Scholar 

  44. Kashiwara, M., Kim, M., Oh, S., Park, E.: Monoidal categorification and quantum affine algebras. Compos. Math. 156(5), 1039–1077 (2020)

    Article  MathSciNet  Google Scholar 

  45. Kashiwara, M., Kim, M., Oh, S., Park, E.: Monoidal categorification and quantum affine algebras II. Invent. Math. 236, 1–88 (2024)

    Article  MathSciNet  Google Scholar 

  46. Kashiwara, M., Oh, S.: Categorical relations between langlands dual quantum affine algebras: doubly laced types. J. Algebraic Comb. 49(4) (2019)

  47. Kashiwara, M., Oh, S.: The \((q,t)\)-Cartan matrix specialized at \(q=1\) and its applications. Math. Z. 303(2), Paper No. 42 (2023)

  48. Kashiwara, M., Se-**, O.: \(t\)-quantized cartan matrix and R-matrices for cuspidal modules over quiver Hecke algebras. Adv. Math. 441, 109551 (2024)

    Article  MathSciNet  Google Scholar 

  49. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  50. Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., pp. 185–203 (1980)

  51. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory Am. Math. Soc. 13(14), 309–347 (2009)

    Article  MathSciNet  Google Scholar 

  52. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 2685–2700 (2011)

  53. Kimura, Y.: Quantum unipotent subgroup and dual canonical basis. Kyoto J. Math. 52(2), 277–331 (2012)

    Article  MathSciNet  Google Scholar 

  54. Lusztig, G.: Canonical bases arising from quantized envelo** algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  Google Scholar 

  55. Lusztig, G.: Introduction to Quantum Groups, Progress in Mathematics, vol. 110. Birkhäuser Boston Inc., Boston, MA (1993)

    Google Scholar 

  56. Moura, A.: An introduction to Finite-dimensional Representations of Classical and Quantum Affine Algebras (2011)

  57. Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  58. Nakajima, H.: \(T\)-analogue of the \(q\)-characters of finite dimensional representations of quantum affine algebras. Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, pp. 196–219 (2001)

  59. Nakajima, H.: \(t\)-analogs of \(q\)-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)

    Article  MathSciNet  Google Scholar 

  60. Nakajima, H.: Quiver varieties and \(t\)-analogs of \(q\)-characters of quantum affine algebras. Ann. Math. 160(3), 1057–1097 (2004)

    Article  MathSciNet  Google Scholar 

  61. Nakajima, H.: Quiver varieties and cluster algebras. Kyoto J. Math. 51(1), 71–126 (2011)

    Article  MathSciNet  Google Scholar 

  62. Oh, S., Scrimshaw, T.: Simplicity of tensor products of Kirillov–Reshetikhin modules: nonexceptional affine and g types. ar**v:1910.10347 (2019)

  63. Ringel, C.M.: Hall algebras and quantum groups. Invent. Math. 101(3), 583–591 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  64. Rouquier, R.: 2-Kac–Moody algebras. ar**v preprint (2008). ar**v:0812.5023 (2008)

  65. Speyer, D.E.: Powers of Coxeter elements in infinite groups are reduced. Proc. Am. Math. Soc. 137(4), 1295–1302 (2009)

    Article  MathSciNet  Google Scholar 

  66. Toën, B.: Derived Hall algebras. Duke Math. J. 135(3), 587–615 (2006)

    Article  MathSciNet  Google Scholar 

  67. Varagnolo, M., Vasserot, E.: Perverse sheaves and quantum Grothendieck rings, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, pp. 345–365 (2003)

Download references

Acknowledgements

The authors would like to thank the referees for reading our manuscript carefully and making so many constructive comments. I.-S. Jang was supported by Incheon National University Research Grant in 2023 (No. 2023-0205), K.-H. Lee was partially supported by a grant from the Simons Foundation (#712100), and S.-j. Oh was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2022R1A2C1004045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-** Oh.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare.

Ethical Approval

Ethical approval is not applicable to this article.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Examples for (Quantum) Positivity

Examples for (Quantum) Positivity

1.1 Quantum positivity and speciality of KR-polynomials

In this subsection, we provide examples for Conjecture 1 and Conjecture 2. Recall that

$$\begin{aligned} F_q(\underline{X_{i,p}}) = E_q(\underline{X_{i,p}}) = L_q(\underline{X_{i,p}}), \end{aligned}$$

and the quantum positivity of \(F_q(\underline{X_{i,p}})\) for types \(B_3\) and \(G_2\) are already verified (up to shift of spectral parameters) in Example 5.16, Example 5.24 (for type \(G_2\)), and Example 5.25 (for type \(B_3\)). In what follows, we provide the formulas for fundamental polynomials for type \(C_3\). Those elements may be obtained from the q-algorithm (cf. Example 5.16) or the quantum cluster algebra algorithm in Proposition 8.6, so we skip the details. The explicit formulas of \(F_q(\underline{X_{i,0}})\)’s for type \(C_3\) are given as follows (under the same convention in the previous examples):

figure d

Since \(F_q(\underline{X_{i,p}}) = \textsf{T}_p( F_q(\underline{X_{i,0}}))\), we verify the quantum positivity of all fundamental polynomials for type \(C_3\). We further remark that the quantum positivity of \(F_q(\underline{X_{i,p}})\) for type \(F_4\) also holds (with the help of computer program).

For type \(G_2\), one may compute

$$\begin{aligned} \begin{aligned}&L_q(\underline{X_{1,6}^3}) = E_q(\underline{X_{1,6}^3}) = F_q(\underline{X_{1,6}^3}), \quad L_q(\underline{X_{2,5}X_{2,7}}) = F_q(\underline{X_{2,5}X_{2,7}}), \\&E_q(\underline{X_{2,5} X_{2,7}}) = L_q(\underline{X_{2,5} X_{2,7}}) + P_{X_{2,5} X_{2,7}, X_{1,6}^3}(q) L_q (\underline{X_{1,6}^3}), \end{aligned} \end{aligned}$$
(A.2)

where \(P_{X_{2,5} X_{2,7}, X_{1,6}^3}(q) = q^3 \in q\mathbb {Z}_{\geqslant 0}[q]\). Then the quantum positivity of \(L_q(\underline{X_{1,6}^3})\) follows from Example 5.24 and the definition of \(E_q(\underline{X_{1,6}^3})\). Moreover, it follows from (A.2), Example 5.16, and Example 5.24 that the quantum positivity of \(L_q(\underline{X_{2,5} X_{2,7}})\) also holds.

In general, for \(\underline{m}^{(i)}[p,s]\) with \(|p-s|\leqslant 2\), the computation of \(L_q(\underline{m}^{(i)}[p,s])\) is similar with the one for (A.2), since \(E_q(\underline{m}^{(i)}[p,s])\) has only two dominant monomials thanks to Theorem 6.9. It follows from Proposition 5.23 that this implies that \(L_q(\underline{m}^{(i)}[p,s]) = F_q(\underline{m}^{(i)}[p,s])\). For example, when \(\textsf{g}\) is of type \(B_3\),

$$\begin{aligned} \begin{aligned}&E_q(\underline{X_{1,0} X_{1,2}}) = q F_q(\underline{X_{1,0}}) * F_q(\underline{X_{1,2}}) =L_q(\underline{X_{1,0} X_{1,2}}) + q^2 L_q (\underline{X_{2,1}}), \\&E_q(\underline{X_{2,0} X_{2,2}}) = q^{-1} F_q(\underline{X_{2,0}}) * F_q(\underline{X_{2,2}}) = L_q(\underline{X_{2,0} X_{2,2}}) + q^2 L_q(\underline{X_{1,1}X_{3,1}^2}),\\&E_q(\underline{X_{3,0} X_{3,2}}) = F_q(\underline{X_{3,0}}) * F_q(\underline{X_{3,2}}) = L_q(\underline{X_{3,0} X_{3,2}}) + q L_q(\underline{X_{2,1}}). \end{aligned} \end{aligned}$$
(A.3)

Here \(L_q(\underline{X_{1,1}X_{3,1}^2})=E_q(\underline{X_{1,1}X_{3,1}^2})=F_q(\underline{X_{1,1}X_{3,1}^2})\). Furthermore, one may check that the quantum positivity of \(L_q(\underline{X_{i,0}X_{i,2}})\) holds from Example 5.25 and (A.3). Similarly, one may have an analog of (A.3) for type \(C_3\) with (A.1), which implies the quantum positivity of \(L_q(\underline{X_{i,0}X_{i,2}})\) in this case. However, we cannot use the same argument in general because it does not seem to be easily determined by direct computation how many dominant monomials \(E_q(\underline{m}^{(i)}[p,s])\) have for higher levels.

1.2 Quantum positivity of non KR-polynomials

In this subsection, we observe some examples in which \(L_q(\underline{m})\) has the quantum positivity for a dominant monomial m different from the KR-monomials.

Example A.1

Let us consider the case of type \(C_2\). Then the fundamental polynomials \(F_q(\underline{X_{1,2}})\) and \(F_q(\underline{X_{2,5}})\) are given as follows:

$$\begin{aligned} \begin{aligned}&F_q(\underline{X_{1,2}}) = q^{\frac{1}{2}} \widetilde{X}_{1,2} + q^{\frac{3}{2}} \widetilde{X}_{2,3}*\widetilde{X}_{1,4}^{-1} + q^{\frac{1}{2}} \widetilde{X}_{1,4}*\widetilde{X}_{2,5}^{-1} + q^{-\frac{1}{2}}\widetilde{X}_{1,6}^{-1}, \\&F_q(\underline{X_{2,5}}) = q \widetilde{X}_{2,5} + q^{2} \widetilde{X}_{1,6}^{2}*\widetilde{X}_{2,7}^{-1} + (q^{-1} + q) \widetilde{X}_{1,6}\widetilde{X}_{1,8}^{-1} + q^{2} \widetilde{X}_{2,7}*\widetilde{X}_{1,8}^{-2} + q^{-1} \widetilde{X}_{2,9}^{-1}. \end{aligned} \end{aligned}$$
(A.4)

It follows from (A.4) that

$$\begin{aligned} E_q(\underline{X_{1,2} X_{2,5}}) = q F_q(\underline{X_{1,2}}) * F_q(\underline{X_{2,5}}) = L_q(\underline{X_{1,2} X_{2,5}}) + q^2 L_q(\underline{X_{1,4}}), \end{aligned}$$
(A.5)

where \(L_q(\underline{X_{1,2} X_{2,5}}) = F_q(\underline{X_{1,2} X_{2,5}})\) and \(P_{X_{1,2}X_{2,5},\,X_{1,4}}(q) = q^2 \in q\mathbb {Z}[q]\). Then the quantum positivity of \(L_q(\underline{X_{1,2} X_{2,5}})\) follows from the formula (that may be computed with (A.4) and (A.5)) as shown below:

Example A.2

Let us consider the case of type \(B_2\). Then the fundamental polynomials \(F_q(\underline{X_{1,2}})\) and \(F_q(\underline{X_{2,5}})\) are given as follows (cf. (A.4)):

$$\begin{aligned} \begin{aligned} F_q(\underline{X_{1,2}}) =\,&q \widetilde{X}_{1,2} + q^{2} \widetilde{X}_{2,3}^{2}*\widetilde{X}_{1,4}^{-1} + (q^{-1} + q) \widetilde{X}_{2,3}*\widetilde{X}_{2,5}^{-1} + q^{2} \widetilde{X}_{1,4}*\widetilde{X}_{2,5}^{-2} + q^{-1} \widetilde{X}_{1,6}^{-1}, \\ F_q(\underline{X_{2,5}}) =\,&q^{\frac{1}{2}} \widetilde{X}_{2,5} + q^{\frac{3}{2}} \widetilde{X}_{1,6}*\widetilde{X}_{2,7}^{-1} + q^{\frac{1}{2}} \widetilde{X}_{2,7}*\widetilde{X}_{1,8}^{-1} + q^{-\frac{1}{2}} \widetilde{X}_{2,9}^{-1}. \end{aligned} \end{aligned}$$
(A.6)

It follows from (A.6) that

$$\begin{aligned} \begin{aligned} E_q(\underline{X_{1,2}X_{2,5}})&= q F_q(\underline{X_{1,2}})*F_q(\underline{X_{2,5}}) = L_q(\underline{X_{1,2}X_{2,5}}) + q^2 L_q(\underline{X_{2,3}}), \end{aligned} \end{aligned}$$
(A.7)

where \(L_q(\underline{X_{1,2}X_{2,5}}) = F_q(\underline{X_{1,2}X_{2,5}})+F_q(\underline{X_{2,3}})\) and \(P_{X_{1,2}X_{2,5},\,X_{2,3}}(q) = q^2 \in q\mathbb {Z}[q]\). As in Example A.1, it follows from (A.6) and (A.7) that the quantum positivity of \(L_q(\underline{X_{1,2}X_{2,5}})\) holds. Note that \(L_q(\underline{X_{1,2}X_{2,5}})\) has two dominant monomials.

Let us also consider \(E_q(\underline{X_{1,2}X_{2,5}^2})\). By (A.6), \(E_q(\underline{X_{1,2}X_{2,5}^2})\) has three dominant monomials, namely,

$$\begin{aligned} \underline{X_{1,2}X_{2,5}^2} = q^4 \widetilde{X}_{1,2}*\widetilde{X}_{2,5}^2, \quad (q^2 + q^4) \widetilde{X}_{2,3} * \widetilde{X}_{2,5} = (q+q^3) \underline{X_{2,3}X_{2,5}}, \quad q^5 \widetilde{X}_{1,4} = q^4 \underline{X_{1,4}}. \end{aligned}$$

Then we have

$$\begin{aligned} \begin{aligned}&E_q(\underline{X_{1,2}X_{2,5}^2}) = L_q(\underline{X_{1,2}X_{2,5}^2}) + (q+q^3) L_q(\underline{X_{2,3}X_{2,5}}) + q^4 L_q(\underline{X_{1,4}}), \end{aligned} \end{aligned}$$
(A.8)

where \(L_q(\underline{X_{1,2}X_{2,5}^2}) = F_q(\underline{X_{1,2}X_{2,5}^2})\), \(L_q(\underline{X_{2,3}X_{2,5}}) = F_q(\underline{X_{2,3}X_{2,5}})\), and

$$\begin{aligned} P_{X_{1,2}X_{2,5}^2,\, X_{2,3}X_{2,5}}(q) = q+q^3, \quad P_{X_{1,2}X_{2,5}^2,\, X_{1,4}}(q) = q^4 \in q\mathbb {Z}[q]. \end{aligned}$$

We provide the formula of \(L_q(\underline{X_{2,3}X_{2,5}}) = F_q(\underline{X_{2,3}X_{2,5}})\) as follows:

(A.9)

Then one may compute the formula of \(L_q(\underline{X_{1,2}X_{2,5}^2})\) by using (A.8) with (A.6) and (A.9) (or the q-algorithm directly), and then the quantum positivity of \(L_q(\underline{X_{1,2}X_{2,5}^2})\) also follows.

1.3 Positivity of Kazhdan–Lusztig polynomials

This subsection presents examples for the positivity of the KL-type polynomials \(P_{m,m'}(q) \in q\mathbb {Z}[q]\) with at least 2 terms.

Example A.3

In Example A.2 (for type \(B_2\)), we have seen the positivity of KL-type polynomial given by

$$\begin{aligned} P_{X_{1,2}X_{2,5}^2,\, X_{2,3}X_{2,5}}(q) = q+q^3 \in q\mathbb {Z}[q], \end{aligned}$$

which is an example for the positivity of KL-type polynomials with 2-terms. Let us consider the case of type \(G_2\) to investigate more complicated examples.

For \(\underline{m}= \underline{X_{2,0}X_{1,5}^2}\), we have

$$\begin{aligned} \begin{aligned} E_q(\underline{m})&= L_q(\underline{m}) + (q^2 + q^4) L_q(\underline{X_{1,1}X_{1,5}}) + q^6 L_q(\underline{X_{1,3}}), \end{aligned} \end{aligned}$$

where \(L_q(\underline{m}) = F_q(\underline{m}) + L_q(\underline{X_{1,1}X_{1,5}})\) and \(L_q(\underline{X_{1,1}X_{1,5}}) = F_q(\underline{X_{1,1}X_{1,5}}) + L_q(\underline{X_{1,3}})\) and the KL-type polynomials are

$$\begin{aligned} P_{X_{2,0}X_{1,5}^2,\, X_{1,1}X_{1,5}}(q) = q^2 + q^4, \quad P_{X_{2,0}X_{1,5}^2,\, X_{1,3}}(q) = q^6 \in q\mathbb {Z}[q]. \end{aligned}$$

For \(\underline{m}= \underline{X_{2,0}^2 X_{1,1} X_{1,3}}\), we have

$$\begin{aligned} \begin{aligned} E_q(\underline{m})&= L_q(\underline{m}) + q L_q(\underline{X_{2,0}^2X_{2,2}}) + \left( 2q^4 + q^6 + q^8 + q^{10} \right) L_q(\underline{X_{2,0}X_{1,1}^3}), \end{aligned} \end{aligned}$$

where \(L_q(\underline{m}) = F_q(\underline{m}) + (q^{-2} + 1 + q^2) F_q(\underline{X_{2,0}X_{1,1}^3})\) and the KL-type polynomials are

$$\begin{aligned} P_{X_{2,0}^2 X_{1,1} X_{1,3},\, X_{2,0}^2 X_{2,2}}(q) = q, \quad P_{X_{2,0}^2 X_{1,1} X_{1,3},\, X_{2,0}X_{1,1}^3}(q) = 2q^4 + q^6 + q^8 + q^{10} \in q\mathbb {Z}[q]. \end{aligned}$$

For \(\underline{m}= \underline{X_{2,0}^2 X_{2,4}}\), we have the expansion of \(E_q(\underline{m})-L_q(\underline{m})\) in terms of \(\textsf{L}_q\) as follows:

where \(L_q(\underline{X_{2,0}X_{1,1}X_{1,3}}) = F_q(\underline{X_{2,0}X_{2,2}}) + (q^{-2} + 1 + q^2) L_q(\underline{X_{1,1}^3})\) and the KL-type polynomials (in \(q\mathbb {Z}[q]\)) are

$$\begin{aligned} \begin{aligned}&P_{X_{2,0}^2 X_{2,4},\, X_{2,0}X_{1,1}X_{1,3}}(q) = q^4 + q^6 + q^8, \quad P_{X_{2,0}^2 X_{2,4},\, X_{2,0}X_{2,2}}(q) = q^3 + q^6,\\&P_{X_{2,0}^2 X_{2,4},\, X_{1,1}^3}(q) = 2q^2 + 6q^4 + 6q^6 +4q^8 + 2q^{10} + q^{12}. \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, IS., Lee, KH. & Oh, Sj. Quantization of Virtual Grothendieck Rings and Their Structure Including Quantum Cluster Algebras. Commun. Math. Phys. 405, 173 (2024). https://doi.org/10.1007/s00220-024-05037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-05037-z

Navigation