Log in

Theoretical study on the sequential reduction and oxidation mechanism for tetrabromobisphenol A degradation under photocatalytic UV/Fenton conditions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

DFT calculations in both gaseous phase and solution are carried out to investigate the degradation mechanism of tetrabromobisphenol A (TBBPA) under photocatalytic UV/Fenton conditions. It is found that there exist reductive process and oxidative process. Our calculations show that the reductive process is caused by a conduction band (CB) photoelectron e CB to make the C–Br bond broken, while the oxidative process is due to ·OH radical attacking three possible sites of TBBPA to form different intermediates. In the reductive process, the reduction of TBBPA by a photoelectron e CB is coupled with C–Br bond cleavage, and the formation of tribromobisphenol A radical (IM3) is the rate-determining step to form the reduction product tribromobisphenol A (P1), where in the experiment (Zhong et al. Water Res 46(15):4633–4644, 2012), mechanism being proposed as ·OH radical attacking C–Br bond. In the oxidative process, abstracting hydrogen atom by ·OH radical is the most plausible reaction to form 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane radical (IM4). IM4 can receive a conduction band electron e CB to yield 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane carbanion (IM4′), followed by a C–C bond breaking reaction, resulting in the formation of P2 and 3,5-dibromophenol carbanion (IM5′).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kitamura S, **no N, Ohta S, Kuroki H, Fujimoto N (2002) Biochem Biophys Res Commun 293(1):554–559

    Article  CAS  Google Scholar 

  2. Riess M, van Eldik R (1998) J Chromatogr A 827(1):65–71

    Article  CAS  Google Scholar 

  3. Alaee M, Arias P, Sjödin A, Bergman Å (2003) Environ Int 29(6):683–689

    Article  CAS  Google Scholar 

  4. Kitamura S, Suzuki T, Sanoh S, Kohta R, **no N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S (2005) Toxicol Sci 84(2):249–259

    Article  CAS  Google Scholar 

  5. Abdallah MAE, Harrad S, Covaci A (2008) Environ Sci Technol 42(18):6855–6861

    Article  CAS  Google Scholar 

  6. Luo XJ, Zhang XL, Liu J, Wu JP, Luo Y, Chen SJ, Mai BX, Yang ZY (2009) Environ Sci Technol 43(2):306–311

    Article  Google Scholar 

  7. McKinney MA, Cesh LS, Elliott JE, Williams TD, Garcelon DK, Letcher RJ (2006) Environ Sci Technol 40(20):6275–6281

    Article  CAS  Google Scholar 

  8. Meerts I, van Zanden JJ, Luijks EAC, van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman A, Brouwer A (2000) Toxicol Sci 56(1):95–104

    Article  CAS  Google Scholar 

  9. Brenner A, Mukmenev I, Abeliovich A, Kushmaro A (2006) Ecotoxicology 15(4):399–402

    Article  CAS  Google Scholar 

  10. Gerecke AC, Giger W, Hartmann PC, Heeb NV, Kohler HPE, Schmid P, Zennegg M, Kohler M (2006) Chemosphere 64(2):311–317

    Article  CAS  Google Scholar 

  11. George KW, Haggblom MM (2008) Environ Sci Technol 42(15):5555–5561

    Article  CAS  Google Scholar 

  12. Uhnáková B, Ludwig R, Pěknicová J, Homolka L, Lisá L, Šulc M, Petříčkova A, Elzeinová F, Pelantová H, Monti D, Křen V, Haltrich D, Martínková L (2011) Bioresour Technol 102(20):9409–9415

    Article  Google Scholar 

  13. Peng XX, Zhang ZL, Luo WS, Jia XS (2013) Bioresour Technol 128:173–179

    Article  CAS  Google Scholar 

  14. Ronen Z, Abeliovich A (2000) Appl Environ Microbiol 66(6):2372–2377

    Article  CAS  Google Scholar 

  15. Mackenzie K, Kopinke FD (1996) Chemosphere 33(12):2423–2430

    Article  CAS  Google Scholar 

  16. Lin KD, Ding JF, Huang XW (2012) Ind Eng Chem Res 51(25):8378–8385

    Article  CAS  Google Scholar 

  17. Liu GB, Zhao HY, Thiemann T (2009) J Hazard Mater 169(1–3):1150–1153

    Article  CAS  Google Scholar 

  18. Liu GB, Dai L, Gao X, Li MK, Thiemann T (2006) Green Chem 8(9):781–783

    Article  CAS  Google Scholar 

  19. Luo S, Yang SG, Wang XD, Sun C (2012) Environ Eng Sci 29(6):453–460

    Article  CAS  Google Scholar 

  20. Lin K, Liu WP, Gan J (2009) Environ Sci Technol 43(12):4480–4486

    Article  CAS  Google Scholar 

  21. Zhu QQ, Mizutani Y, Maeno S, Fukushima M (2013) Molecules 18(5):5360–5372

    Article  CAS  Google Scholar 

  22. Zhang KL, Huang J, Zhang W, Yu YF, Deng SB, Yu G (2012) J Hazard Mater 243:278–285

    Article  CAS  Google Scholar 

  23. Monserrate E, Haggblom MM (1997) Appl Environ Microbiol 63(10):3911–3915

    CAS  Google Scholar 

  24. Xu J, Meng W, Zhang Y, Li L, Guo CS (2011) Appl Catal B-Environ 107(3–4):355–362

    Article  CAS  Google Scholar 

  25. Sun CY, Chang W, Ma WH, Chen CC, Zhao JC (2013) Environ Sci Technol 47:2370–2377

    Article  CAS  Google Scholar 

  26. Guo YG, Lou XY, **ao DX, Xu L, Wang ZH, Liu JS (2012) J Hazard Mater 241:301–306

    Article  Google Scholar 

  27. He HY, Zapol P, Curtiss LA (2012) Energy Environ Sci 5(3):6196

    Article  CAS  Google Scholar 

  28. Lee D, Kanai Y (2012) J Am Chem Soc 134(50):20266–20269

    Article  CAS  Google Scholar 

  29. Chen JX, Zhu LZ (2007) J Photochem Photobiol A 188(1):56–64

    Article  CAS  Google Scholar 

  30. De Laat J, Gallard H (1999) Environ Sci Technol 33(16):2726–2732

    Article  Google Scholar 

  31. Tryba B, Piszcz M, Grzmil B, Pattek-Janczyk A, Morawski AW (2009) J Hazard Mater 162(1):111–119

    Article  CAS  Google Scholar 

  32. Utset B, Garcia J, Casado J, Domènech X, Peral J (2000) Chemosphere 41:1187–1192

    Article  CAS  Google Scholar 

  33. Pérez M, Torrades F, Domènech X, Peral J (2002) Water Res 36(11):2703–2710

    Article  Google Scholar 

  34. Zhong YH, Liang XL, Zhong Y, Zhu JX, Zhu SY, Yuan P, He HP, Zhang J (2012) Water Res 46(15):4633–4644

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, F. IA, Bliino J, Zheng G, Sonnenberg JL, Hada M, Ehara KT, Fukuda R, Hasegawa J, Ishida M, T. N, Y. HOK, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Oliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Straroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari KR, Jendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. B.01 edn. Gaussian, Inc., Wallingford CT

  36. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  39. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  40. Mraenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  Google Scholar 

  41. Wu D, Song K, Fang Z, Gu FL (2013) Curr Phys Chem 3:179–186

    Article  CAS  Google Scholar 

  42. Rotko G, Romańczyk PP, Andryianau G, Kurek SS (2014) Electrochem Commun 43:117–120

    Article  CAS  Google Scholar 

  43. Brusa MA, Grela MA (2005) J Phys Chem B 109:1914–1918

    Article  CAS  Google Scholar 

  44. Goldstein S, Meyerstein D (1999) Acc Chem Res 32:547–550

    Article  CAS  Google Scholar 

  45. Maldotti A, Molinari A, Amadelli R, Carbonell E, Garcia H (2008) Photochem Photobiol Sci 7(7):819–825

    Article  CAS  Google Scholar 

  46. Carneiro JT, Almeida AR, Moulijn JA, Mul G (2010) Phys Chem Chem Phys 12(11):2744–2750

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The supports of the National Natural Science Foundation of China (21273081, 21073067) are greatly appreciated. Financial support from the Project supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Long Gu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1662 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Peng, L., Li, S. et al. Theoretical study on the sequential reduction and oxidation mechanism for tetrabromobisphenol A degradation under photocatalytic UV/Fenton conditions. Theor Chem Acc 134, 3 (2015). https://doi.org/10.1007/s00214-014-1604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1604-4

Keywords

Navigation