Log in

Defect in cyclotomic Hecke algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The complexity of a block of a symmetric algebra can be measured by the notion of defect, a numerical datum associated with each of the simple modules contained in the block. Geck showed that the defect is a block invariant for Iwahori–Hecke algebras of finite Coxeter groups in the equal parameter case, and speculated that a similar result should hold in the unequal parameter case. We prove that the defect is a block invariant for all cyclotomic Hecke algebras associated with the complex reflection groups of the infinite series G(lpn), which include the Weyl groups of type \(B_n\) in the unequal parameter case. In particular, for the groups G(l, 1, n), we show that the defect corresponds to the notion of weight in the sense of Fayers. We thus also obtain a new way of computing the weight, which uses a generalisation of the notion of hook lengths. We further show computationally that the defect is a block invariant for all cyclotomic Hecke algebras of exceptional type for which the blocks are known, and we conjecture that the result should hold for all complex reflection groups. Finally, we obtain that the defect is also a block invariant for cyclotomic Yokonuma–Hecke algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariki, S.: On the semi-simplicity of the Hecke algebra of \((\mathbb{Z} /r\mathbb{Z} ) \wr \mathfrak{S} _n\). J. Algebra 169, 216–225 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Ariki, S.: Representation theory of a Hecke algebra of \(G(r, p, n)\). J. Algebra 177, 164–185 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Ariki, S., Koike, K.: A Hecke algebra of \((\mathbb{Z} /r\mathbb{Z} )\wr S_n\) and construction of its irreducible representations. Adv. Math. 106, 216–243 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Benard, M.: Schur indices and splitting fields of the unitary reflection groups. J. Algebra 38, 318–342 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Bessenrodt, C., Gramain, J.-B., Olsson, J.: Generalized hook lengths in symbols and partitions. J. Algebraic Combin. 36, 309–332 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Bessis, D.: Sur le corps de définition d’un groupe de réflexions complexe. Commun. Algebra 25(8), 2703–2716 (1997)

    MATH  Google Scholar 

  7. Bessis, D.: Finite complex reflection arrangements are \(K(\pi, 1)\). Ann. Math. 181(3), 809–904 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Boura, C., Chavli, E., Chlouveraki, M.: The BMM symmetrising trace conjecture for the exceptional 2-reflection groups of rank 2. J. Algebra 558, 176–198 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Boura, C., Chavli, E., Chlouveraki, M., Karvounis, K.: The BMM symmetrising trace conjecture for groups \(G_4\), \(G_5\), \(G_6\), \(G_7\), \(G_8\). J. Symb. Comput. 96, 62–84 (2020)

    MATH  Google Scholar 

  10. Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 4–6, Elements of Mathematics, English translation of “Groupes et algèbres de Lie”. Springer, London (2005)

  11. Bremke, K., Malle, G.: Reduced words and a length function for \(G(e, 1, n)\). Indag. Math. 8, 453–469 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Broué, M., Malle, G.: Zyklotomische Heckealgebren. Astérisque 212, 119–189 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Broué, M., Malle, G., Michel, J.: Towards spetses I. Trans. Groups 4, 157–218 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras. Invent. Math. 178, 451–484 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Chavli, E.: Universal deformations of the finite quotients of the braid group on \(3\) strands. J. Algebra 459, 238–271 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Chavli, E.: The BMR freeness conjecture for the tetrahedral and octahedral family. Commun. Algebra 46(1), 386–464 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Chavli, E.: Decomposition matrices for the generic Hecke algebras on \(3\) strands in characteristic zero. Algebr. Represent. Theory 23, 1001–1030 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Chlouveraki, M.: Blocks and Families for Cyclotomic Hecke Algebras. Lecture Notes in Mathematics, vol. 1981. Springer, Berlin (2009)

    MATH  Google Scholar 

  20. Chlouveraki, M.: Hecke algebras, generalisations and representation theory. Habilitation Thesis. Available at: https://tel.archives-ouvertes.fr/tel-01411063

  21. Chlouveraki, M., Jacon, N.: Schur elements and basic sets for cyclotomic Hecke algebras. J. Algebra Appl. 10(5), 979–993 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Chlouveraki, M., Jacon, N.: Schur elements for Ariki–Koike algebras and applications. J. Algebraic Combin. 35(2), 291–311 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Chlouveraki, M., Miyachi, H.: Decomposition matrices for \(d\)-Harish–Chandra series: the exceptional rank 2 cases. LMS J. Comput. Math. 14, 271–290 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Chlouveraki, M., Pouchin, G.: Representation theory and an isomorphism theorem for the framisation of the Temperley–Lieb algebra. Math. Z. 285(3), 1357–1380 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Chlouveraki, M., Poulain d’Andecy, L.: Representation theory of the Yokonuma–Hecke algebra. Adv. Math. 259, 134–172 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Chlouveraki, M., Poulain d’Andecy, L.: Markov traces on affine and cyclotomic Yokonuma–Hecke algebras. Int. Math. Res. Not. 2016(14), 4167–4228 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Wiley, New York (1962). Reprinted 1988 as Wiley Classics Library Edition

  28. Dipper, R., Mathas, A.: Morita equivalences of Ariki–Koike algebras. Math. Z. 240(3), 579–610 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Espinoza, J., Ryom-Hansen, S.: Cell structures for the Yokonuma–Hecke algebra and the algebra of braids and ties. J. Pure Appl. Algebra 222(11), 3675–3720 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Fayers, M.: Weights of multipartitions and representations of Ariki–Koike algebras. Adv. Math. 206, 112–144 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Geck, M.: On the classification of \(l\)-blocks of finite groups of Lie type. J. Algebra 151, 180–191 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Geck, M.: Brauer trees of Hecke algebras. Commun. Algebra 20, 2937–2973 (1992)

    MathSciNet  MATH  Google Scholar 

  33. Geck, M., Hiss, G., Lübeck, F., Malle, G., Pfeiffer, G.: CHEVIE—a system for computing and processing generic character tables. Appl. Algebra Eng. Commun. Comput. 7, 175–210 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Geck, M., Iancu, L., Malle, G.: Weights of Markov traces and generic degrees. Indag. Math. (N.S.) 11(3), 379–397 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Geck, M., Jacon, N.: Irreducible Representations of Hecke Algebras at Roots of Unity. Algebras and Applications. Springer, London (2011)

    MATH  Google Scholar 

  36. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras. London Mathematical Society Monographs. New Series, vol. 21, pp. 15–446. The Clarendon Press/Oxford University Press, New York/Oxford (2000)

    Google Scholar 

  37. Geck, M., Rouquier, R.: Centers and simple modules for Iwahori–Hecke algebras. In: Cabanes, M. (ed.) Finite Reductive Groups, Related Structures and Representations. Progress in Math., vol. 141, pp. 251–272. Birkhäuser, London (1997)

    MATH  Google Scholar 

  38. Genet, G., Jacon, N.: Modular representations of cyclotomic Hecke algebras of type \(G(r, p, n)\). Int. Math. Res. Not. 2006, 18 (2006) (Art. ID 93049)

  39. Jacon, N.: Kleshchev multipartitions and extended Young diagrams. Adv. Math. 339, 367–403 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Jacon, N., Lecouvey, C.: Cores of Ariki–Koike algebras. Doc. Math. 26, 103–124 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Jacon, N., Poulain d’Andecy, L.: An isomorphism theorem for Yokonuma–Hecke algebras and applications to link invariants. Math. Z. 283(1), 301–338 (2016)

    MathSciNet  MATH  Google Scholar 

  42. James, G.D.: The decomposition matrices of \({\rm GL}_n(q)\) for \(n \le 10\). Proc. Lond. Math. Soc. 60, 225–265 (1990)

    Google Scholar 

  43. Juyumaya, J.: Sur les nouveaux générateurs de l’algèbre de Hecke \(H(G, U,1)\). J. Algebra 204, 49–68 (1998)

    MathSciNet  MATH  Google Scholar 

  44. Juyumaya, J.: Markov trace on the Yokonuma–Hecke algebra. J. Knot Theory Ramific. 13, 25–39 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Juyumaya, J., Kannan, S.: Braid relations in the Yokonuma–Hecke algebra. J. Algebra 239, 272–297 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Lusztig, G.: Character sheaves on disconnected groups VII. Represent. Theory 9, 209–266 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Malle, G.: Unipotente Grade imprimitiver komplexer Spiegelungsgruppen. J. Algebra 177, 768–826 (1995)

    MathSciNet  MATH  Google Scholar 

  48. Malle, G.: Degrés relatifs des algèbres cyclotomiques associées aux groupes de réflexions complexes de dimension deux Progress in Math., vol. 141, pp. 311–332. Birkhäuser, London (1996)

    MATH  Google Scholar 

  49. Malle, G.: On the rationality and fake degrees of characters of cyclotomic algebras. J. Math. Sci. Univ. Tokyo 6, 647–677 (1999)

    MathSciNet  MATH  Google Scholar 

  50. Malle, G.: On the generic degrees of cyclotomic algebras. Represent. Theory 4, 342–369 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Malle, G., Mathas, A.: Symmetric cyclotomic Hecke algebras. J. Algebra 205(1), 275–293 (1998)

    MathSciNet  MATH  Google Scholar 

  52. Malle, G., Michel, J.: Constructing representations of Hecke algebras for complex reflection groups. LMS J. Comput. Math. 13, 426–450 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Malle, G., Navarro, G.: Blocks with equal height zero degrees. Trans. Am. Math. Soc. 363(12), 6647–6669 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Marin, I.: The cubic Hecke algebra on at most \(5\) strands. J. Pure Appl. Algebra 216, 2754–2782 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Marin, I.: The freeness conjecture for Hecke algebras of complex reflection groups, and the case of the Hessian group \(G_{26}\). J. Pure Appl. Algebra 218, 704–720 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Marin, I.: Proof of the BMR conjecture for \(G_{20}\) and \(G_{21}\). J. Symb. Comput. 92, 1–14 (2019)

    MATH  Google Scholar 

  57. Marin, I., Pfeiffer, G.: The BMR freeness conjecture for the \(2\)-reflection groups. Math. Comput. 86, 2005–2023 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Marin, I., Wagner, E.: Markov traces on the BMW algebras. ar**v:1403.4021

  59. Mathas, A.: Matrix units and generic degrees for the Ariki–Koike algebras. J. Algebra 281, 695–730 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Michel, J.: The development version of the CHEVIE package of GAP3. J. Algebra 435, 308–336 (2015)

    MathSciNet  Google Scholar 

  61. Poulain d’Andecy, L.: Invariants for links from classical and affine Yokonuma–Hecke algebras. In: Algebraic Modeling of Topological and Computational Structures and Applications, Springer Proceedings in Mathematics & Statistics, vol. 219, pp. 77–95 (2017)

  62. Rostam, S.: Cyclotomic quiver Hecke algebras and Hecke algebra of \(G(r, p, n)\). Trans. AMS 371(6), 3877–3916 (2019)

    MathSciNet  MATH  Google Scholar 

  63. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274–304 (1954)

    MathSciNet  MATH  Google Scholar 

  64. Thiem, N.: Unipotent Hecke algebras: the structure, representation theory, and combinatorics. Ph.D. Thesis, University of Wisconsin (2004)

  65. Thiem, N.: Unipotent Hecke algebras of \({\rm GL}_n(\mathbb{F} _q)\). J. Algebra 284, 559–577 (2005)

    MathSciNet  Google Scholar 

  66. Thiem, N.: A skein-like multiplication algorithm for unipotent Hecke algebras. Trans. Am. Math. Soc. 359(4), 1685–1724 (2007)

    MathSciNet  MATH  Google Scholar 

  67. Tsuchioka, S.: BMR freeness for icosahedral family. Exp. Math. (2018). https://doi.org/10.1080/10586458.2018.1455072

    Article  MathSciNet  MATH  Google Scholar 

  68. Wada, K.: Blocks of category \(\cal{O} \) for rational Cherednik algebras and of cyclotomic Hecke algebras of type \(G(r, p, n)\). Osaka J. Math. 48, 895–9 (2011)

    MathSciNet  MATH  Google Scholar 

  69. Webpage of the GAP3 Program: http://chlouveraki.perso.math.cnrs.fr/gap3

  70. Williamson, G.: Schubert calculus and torsion explosion. J. Am. Math. Soc. 30, 1023–1046 (2017)

    MathSciNet  MATH  Google Scholar 

  71. Yokonuma, T.: Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini. C. R. Acad. Sci. Paris Ser. I Math. 264, 344–347 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chlouveraki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors were supported by the Agence Nationale de la Recherche through the JCJC project ANR-18-CE40-0001 for the realisation of this project. Towards the end of the project, the first author was also supported by the RRF: Basic Research Financing (Horizontal support for all Sciences) under Sub-action 1. Funding New Researchers Grant No. 15659.

Appendix

Appendix

In Sect. 2.3 we discussed about essential algebras, which are symmetric algebras whose Schur elements are Laurent polynomials of a specific form. Hecke algebras are particular cases of essential algebras. One may ask whether Conjecture 2 holds for other types of essential algebras. The answer is positive for Yokonuma–Hecke algebras (of type A), which were introduced by Yokonuma [71] as generalisations of Iwahori–Hecke algebras.

1.1 The Yokonuma–Hecke algebra of type A and the cyclotomic Yokonuma–Hecke algebra

The Yokonuma–Hecke algebra of type A is a generalisation of the Iwahori–Hecke algebra of type A and can be seen as a particular case of a cyclotomic Yokonuma–Hecke algebra, introduced in [26]. The term “cyclotomic” here does not refer to a cyclotomic specialisation, but to the fact that the cyclotomic Yokonuma–Hecke algebra generalises the Yokonuma–Hecke algebra of type A in the same way that the Ariki–Koike algebra, which is also called “cyclotomic Hecke algebra” by several people, generalises the Hecke algebra of type A. In order not to repeat everything twice, we will work directly with cyclotomic Yokonuma–Hecke algebras, but, for all results used, we will also give the references for the Yokonuma–Hecke algebra of type A, because it was studied first.

Let \(n\in \mathbb {Z}_{\ge 0}\) and \(d,l \in \mathbb {Z}_{>0}\). Let \(\textbf{q}:=(Q_0,\,\ldots ,\,Q_{l-1};\,q)\) be a set of \(l+1\) indeterminates and set \(R:=\mathbb {Q}[\textbf{q},\textbf{q}^{-1}]\). We define the cyclotomic Yokonuma–Hecke algebra \(\textrm{Y}(d,l,n)\) as the associative R-algebra (with unit) with a presentation by generators:

$$\begin{aligned} g_1,g_2,\ldots ,g_{n-1}, t_1,\ldots , t_n, X_1 \end{aligned}$$

and relations:

$$\begin{aligned} \begin{array}{rclcl} g_ig_j &{} = &{} g_jg_i &{}&{} \text{ for } \text{ all } i,j=1,\ldots ,n-1 \text{ such } \text{ that } \vert i-j\vert > 1,\\ g_ig_{i+1}g_i &{} = &{} g_{i+1}g_ig_{i+1} &{}&{} \text{ for } \text{ all } i=1,\ldots ,n-2,\\ t_it_j &{} = &{} t_jt_i &{}&{} \text{ for } \text{ all } i,j=1,\ldots ,n,\\ g_it_j &{} = &{} t_{s_i(j)}g_i &{}&{} \text{ for } \text{ all } i=1,\ldots ,n-1 \text{ and } j=1,\ldots ,n,\\ t_j^d &{} = &{} 1 &{}&{} \text{ for } \text{ all } j=1,\ldots ,n,\\ g_i^2 &{} = &{} q +(q-1) e_{i} g_i &{}&{} \text{ for } \text{ all } i=1,\ldots ,n-1,\\ X_1g_1X_1g_1&{}=&{}g_1X_1g_1X_1&{}&{}\\ X_1g_i&{}=&{}g_iX_1 &{}&{} \text{ for } \text{ all } i=2,\ldots ,n-1,\\ X_1t_j&{}=&{}t_jX_1 &{}&{} \text{ for } \text{ all } j=1,\ldots ,n,\\ (X_1 -Q_0) \cdots (X_1 -Q_{l-1})&{}=&{}0&{}&{} \end{array}\\ \end{aligned}$$

where, for all \(i=1,\ldots ,n-1\), \(s_i\) is the transposition \((i,i+1)\) and

$$\begin{aligned} e_i=\frac{1}{d}\sum \limits _{0\le s\le d-1}t_i^s t_{i+1}^{-s}. \end{aligned}$$

For \(d=1\), the generators \(t_j\) disappear and \(\textrm{Y}(1,l,n)\) is isomorphic to the Ariki–Koike algebra \(R\,\mathcal {H}^\textbf{q}_{n}\). For \(l=1\), the generator \(X_1\) disappears and \(\textrm{Y}(d,1,n)\) is the Yokonuma–Hecke algebra of type A, which in turn becomes the group algebra of G(d, 1, n) for \(q=1\). The presentation of \(\textrm{Y}(d,1,n)\) by generators and relations is due to [43,44,45], with the simplified quadratic relation for the \(g_i\) being due to [25] (see also [24, Remark 3.1] for the quadratic relation given above).

The representation theory of the Yokonuma–Hecke algebra \(\textrm{Y}(d,1,n)\) of type A was first studied in [64,65,66], but its irreducible representations were explicitly constructed in [25] and adapted in [24] for the quadratic relation given above. The irreducible representations of \(\textrm{Y}(d,l,n)\) were constructed in [26] and can be adapted similarly. It turns out that the algebra \(\textrm{Y}(d,l,n)\) is split semisimple over the field \(K(\textbf{q})\), where \(K:={{\mathbb {Q}}}(\eta _{dl})\) (the splitting field is \({{\mathbb {Q}}}(\eta _{d},\textbf{q})\)). Moreover, there exists a bijection \(\Pi ^{dl} (n) \leftrightarrow {\textrm{Irr}}(K(\textbf{q})\textrm{Y}(d,l,n)),\, {\varvec{\lambda }}\mapsto V^{{\varvec{\lambda }}}\).

A symmetrising trace \(\varvec{\tau }\) was defined in [26] on \(K(\textbf{q})\textrm{Y}(d,l,n)\); this map satisfies \(\varvec{\tau }(b)=\delta _{1b}\) for all b in a certain basis of \(\textrm{Y}(d,l,n)\). The map \(\varvec{\tau }\) coincides with the canonical symmetrising trace on \(\mathcal {H}^\textbf{q}_{n}\) for \(d=1\) and with the symmetrising trace defined on the Yokonuma–Hecke algebra of type A in [25] for \(l=1\). By [26, Proposition 7.4], the Schur element of \(V^{{\varvec{\lambda }}} \in {\textrm{Irr}}(K(\textbf{q})\textrm{Y}(d,l,n))\) is equal to

$$\begin{aligned} d^n s_{{\varvec{\lambda }}[1]}(\textbf{q}) s_{{\varvec{\lambda }}[2]}(\textbf{q}) \ldots s_{{\varvec{\lambda }}[d]}(\textbf{q}) \end{aligned}$$
(6.1)

where, for all \(i=1,\ldots ,d\), \({\varvec{\lambda }}[i]=(\lambda ^{(i-1)l}, \lambda ^{(i-1)l+1}\ldots ,\lambda ^{il-1}) \in \Pi ^l(n)\) and \(s_{{\varvec{\lambda }}[i]}(\textbf{q})\) is given by Formula (3.2). Our notation for the \({\varvec{\lambda }}[i]\) is in agreement with the notation used in Sect. 3.3 if we take \(\mathcal {U}=\left\{ 0,1,\ldots ,{dl-1}\right\} \), \(t=d\) and \(\mathcal {U}_i=\{ (i-1)l+k\,|\,k=0,1,\ldots ,l-1\}\) for all \(i=1,\ldots ,d\).

This connection between the Schur elements of \(\textrm{Y}(d,l,n)\) and those of Ariki–Koike algebras was subsequently explained by the following isomorphism of R-algebras proved independently in [61] and in [62]:

$$\begin{aligned} \textrm{Y}(d,l,n) \cong \bigoplus _{\underset{n_1,\ldots ,n_d\ge 0}{n_1+\ldots +n_d=n}} \textrm{Mat}_{\frac{n!}{n_1!\dots n_d!}} \left( \mathcal {H}^\textbf{q}_{n_1}\otimes _R \mathcal {H}^\textbf{q}_{n_2}\otimes _R \ldots \otimes _R \mathcal {H}_{n_d}^\textbf{q}\right) . \end{aligned}$$
(6.2)

This isomorphism in the case of the Yokonuma–Hecke algebra of type A, that is, the case \(l=1\), had first been obtained in [46], subsequently in [41], and adapted in [24] for the quadratic relation given above and the ring R. Another proof for \(l=1\) was later given in [29]. The existence of the isomorphism (6.2) implies that the map \(\varvec{\tau }\) above is indeed a symmetrising trace on \(\textrm{Y}(d,l,n)\) over R.

Let y be an indeterminate and and let \(\varphi : K[\textbf{q},\textbf{q}^{-1}] \rightarrow K[y,y^{-1}]\) be a K-algebra morphism such that

$$\begin{aligned}{} & {} \varphi (Q_i)=\eta _{l}^{i}y^{r_{i}} \text { for}\ i=0,1,\ldots ,l-1, \\{} & {} \varphi (q)=y^{r} \end{aligned}$$

where \((r_{0},\ldots ,r_{l-1},r)\in \mathbb {Z}^{l+1}\). Let also \(\theta : K[y,y^{-1}] \rightarrow K(\eta ), y \mapsto \eta \) be a specialisation of \(K[y,y^{-1}]\) such that \(\eta \in {{\mathbb {C}}}^*\) and \(\theta (\eta _l)\) is a primitive l-th root of unity (for simplicity, we may assume that \(\theta \) is a K-algebra morphism, whence \(\theta (\eta _l)=\eta _l\)). Let \(\Phi \) denote the minimal polynomial of \(\eta \) over the field K. It follows from Equations (6.1) and (6.2) that, for \({\varvec{\lambda }}, {\varvec{\mu }}\in \Pi ^{dl}(n)\),

  • the \(\Phi \)-defect of \(V^{{\varvec{\lambda }}}\) is equal to \(\sum _{i=1}^d \nu _\Phi (\varphi (s_{{\varvec{\lambda }}[i]}(\textbf{q})))\), and

  • \(V^{{\varvec{\lambda }}}\) and \(V^{{\varvec{\mu }}}\) are in the same \(\theta \)-block if and only \(V^{{\varvec{\lambda }}[i]}\) and \(V^{{\varvec{\mu }}[i]}\) are in the same \(\theta \)-block of \(K(\eta )(\mathcal {H}^\textbf{q}_{n_i})_\varphi \), where \(n_i=|{\varvec{\lambda }}[i]|=|{\varvec{\mu }}[i]|\), for all \(i=1,\ldots ,d\).

Given the above, the following result is a direct consequence of Theorem 6.

Theorem 10

Let \({\varvec{\lambda }},{\varvec{\mu }}\in \Pi ^{dl}(n)\). If \(V^{{\varvec{\lambda }}}\) and \(V^{{\varvec{\mu }}}\) are in the same \(\theta \)-block, then they have the same \(\Phi \)-defect.

Therefore, the analogue of Conjecture 2 is also true for the cyclotomic Yokonuma–Hecke algebra \(\textrm{Y}(d,l,n)\), and in particular for the Yokonuma–Hecke algebra \(\textrm{Y}(d,1,n)\) of type A.

1.2 Other essential algebras

We have stated Conjecture 2 for all cyclotomic Hecke algebras associated with complex reflection groups and we have seen that it holds in all cases for which information on blocks and decomposition matrices is known, that is, for the groups of the infinite series G(lpn) and for certain exceptional groups. In the previous subsection we saw that its analogue holds for the Yokonuma–Hecke algebra of type A and for the cyclotomic Yokonuma–Hecke algebra, but one could argue that this is because of the connection, established by the isomorphism (6.2), with the Iwahori–Hecke algebra of type A and the Ariki–Koike algebra respectively. However, one could also wonder whether a similar result holds for all one-parameter essential algebras (including the ones obtained as specialisations of multi-parameter ones as in the end of Sect. 2.3). One could go a step further and wonder whether a similar result holds for any essential algebra, with \(\Phi \)-defect being replaced by \( \Psi _{V,i}(M_{V,i})\)-defect, using the notation of Definition 1. Unfortunately, we do not have any data or examples outside the ones treated in this paper to back up this claim. Proving the claim on a generic level would help a lot though in avoiding to do a huge case-by-case analysis in order to prove Conjecture 2 for the exceptional complex reflection groups.

Another perspective to consider is the case of positive characteristic. Throughout this paper we only consider specialisations to subfields of \({{\mathbb {C}}}\). Moreover, one can use classical modular representation theory of finite groupes to see that not all simple modules inside a p-block (where p is a prime number) have the same defect. However, if we consider a cyclotomic Ariki–Koike algebra as in Remark 8 and a specialisation \(\theta : {{\mathbb {Z}}}_K[y,y^{-1}] \rightarrow k, y \mapsto \eta \), where k is any field and \(\eta \in k\) is a root of unity of order \(e>1\), then Theorem 6 is still valid with a proof similar to the one we provided if the characteristic of k is large enough (to be precise, larger than \(e+n-1\)). It is also valid if \(\eta =1\) and k is a field of characteristic \(e>0\). These statements can, through the Morita equivalence of Dipper and Mathas, generalise to any cyclotomic Ariki–Koike algebra. We decided not to include these results for the sake of uniformity, and in order to restrict ourselves to the proof of Conjecture 2 in its current form. However, we do not exclude the possibility that other Hecke algebras and, more generally, other essential algebras might share similar properties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chlouveraki, M., Jacon, N. Defect in cyclotomic Hecke algebras. Math. Z. 305, 57 (2023). https://doi.org/10.1007/s00209-023-03380-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03380-w

Mathematics Subject Classification

Navigation