Log in

Kazhdan–Lusztig representations and Whittaker space of some genuine representations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a formula for the dimension of Whittaker functionals of irreducible constituents of a regular unramified genuine principal series for covering groups. The formula explicitly relates such dimension to the Kazhdan–Lusztig representations associated with certain right cells of the Weyl group. We also state a refined version of the formula, which is proved under some natural assumption. The refined formula is also verified unconditionally in several important cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aluffi, P., Mihalcea, L.C., Schürmann, J., Su, C.: Motivic Chern classes of Schubert cells, Hecke algebras, and applications to Casselman’s problem. ar**v:1902.10101v1

  2. Ban, D., Jantzen, C.: The Langlands quotient theorem for finite central extensions of \(p\)-adic groups. Glas. Mat. Ser. III 48(68)(2), 313–334 (2013). https://doi.org/10.3336/gm.48.2.07

    Article  MathSciNet  MATH  Google Scholar 

  3. Ban, D., Jantzen, C.: The Langlands quotient theorem for finite central extensions of \(p\)-adic groups II: intertwining operators and duality. Glas. Mat. Ser. III 51(71)(1), 153–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banks, W., Bump, D., Lieman, D.: Whittaker–Fourier coefficients of metaplectic Eisenstein series. Compos. Math. 135(2), 153–178 (2003). https://doi.org/10.1023/A:1021763918640

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex classical groups. Math. Ann. 259(2), 153–199 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra 80(2), 350–382 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beĭ linson, A., Bernstein, J.: Localisation de \(g\)-modules. C. R. Acad. Sci. Paris Sér. I Math. 292(1), 15–18 (1981). (French, with English summary)

    MathSciNet  MATH  Google Scholar 

  8. Benson, C.T., Curtis, C.W.: On the degrees and rationality of certain characters of finite Chevalley groups. Trans. Am. Math. Soc. 165, 251–273 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernšteĭn, I.N., Gel’fand, I.M., Gel’fand, S.I.: Schubert cells, and the cohomology of the spaces \(G/P\). Uspehi Mat. Nauk. 28(3(171)), 3–26 (1973). (Russian)

    MathSciNet  MATH  Google Scholar 

  10. Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \(\mathfrak{p}\)-adic groups. I. Ann. Sci. École Norm. Sup. (4) 10(4), 441–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  12. Blondel, C.: Uniqueness of Whittaker model for some supercuspidal representations of the metaplectic group. Compos. Math. 83(1), 1–18 (1992)

    MathSciNet  MATH  Google Scholar 

  13. Blondel, C., Stevens, S.: Genericity of supercuspidal representations of \(p\)-adic \(\text{ Sp }_4\). Compos. Math. 145(1), 213–246 (2009). https://doi.org/10.1112/S0010437X08003849

    Article  MathSciNet  MATH  Google Scholar 

  14. Borel, A.: Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Invent. Math. 35, 233–259 (1976). https://doi.org/10.1007/BF01390139

    Article  MathSciNet  MATH  Google Scholar 

  15. Borel, A.: Automorphic \(L\)-functions, automorphic forms, representations and \(L\)-functions. In: Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Proc. Sympos. Pure Math., XXXIII, pp. 27–61. Amer. Math. Soc., Providence, RI (1979)

  16. Bourbaki, N.: Lie Groups and Lie Algebras, Chapters 4–6. Elements of Mathematics. Springer, Berlin (2002). (Translated from the 1968 French original by Andrew Pressley)

    Book  MATH  Google Scholar 

  17. Brylinski, J.-L., Deligne, P.: Central extensions of reductive groups by \( {K}_2\). Publ. Math. Inst. Hautes Études Sci. 94, 5–85 (2001). https://doi.org/10.1007/s10240-001-8192-2

    Article  MATH  Google Scholar 

  18. Brylinski, J.-L., Kashiwara, M.: Kazhdan–Lusztig conjecture and holonomic systems. Invent. Math. 64(3), 387–410 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bump, D., Nakasuji, M.: Casselman’s basis of Iwahori vectors and the Bruhat order. Can. J. Math. 63(6), 1238–1253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bump, D., Nakasuji, M.: Casselman’s basis of Iwahori vectors and Kazhdan–Lusztig polynomials. ar**v:1710.03185

  21. Cai, Y.: Fourier coefficients for theta representations on covers of general linear groups. Trans. Am. Math. Soc. ar**v:1602.06614

  22. Cai, Y., Friedberg, S., Ginzburg, D., Kaplan, E.: Doubling constructions and tensor product L-functions: the linear case. Invent. Math. ar**v:1710.00905

  23. Cai, Y., Friedberg, S., Kaplan, E.: Doubling constructions: local and global theory, with an application to global functoriality for non-generic cuspidal representations. ar**v:1802.02637

  24. Carter, R.W.: Finite Groups of Lie Type. Conjugacy Classes and Complex Characters. Wiley, Chichester (1993)

    Google Scholar 

  25. Casselman, W.: Introduction to the theory of admissible representations of \(p\)-adic reductive groups. https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf

  26. Casselman, W., Shahidi, F.: On irreducibility of standard modules for generic representations. Ann. Sci. École Norm. Sup. (4) 31(4), 561–589 (1998). https://doi.org/10.1016/S0012-9593(98)80107-9. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  27. Deodhar, V.: A brief survey of Kazhdan–Lusztig theory and related topics. Algebraic groups and their generalizations: classical methods, (University Park, PA, 1991). In: Proc. Sympos. Pure Math., vol. 56, pp. 105–124. Amer. Math. Soc., Providence, RI (1994)

  28. Gan, W.T., Gao, F.: The Langlands–Weissman program for Brylinski–Deligne extensions. Astérisque 398, 187–275 (2018). (English, with English and French summaries)

    MathSciNet  Google Scholar 

  29. Gan, W.T., Gao, F., Weissman, M.H.: L-group and the Langlands program for covering groups: a historical introduction. Astérisque 398, 1–31 (2018). (English, with English and French summaries)

    MathSciNet  Google Scholar 

  30. Gao, F.: Distinguished theta representations for certain covering groups. Pac. J. Math. 290(2), 333–379 (2017). https://doi.org/10.2140/pjm.2017.290.333

    Article  MathSciNet  MATH  Google Scholar 

  31. Gao, F.: The Langlands–Shahidi L-functions for Brylinski–Deligne extensions. Am. J. Math. 140(1), 83–137 (2018). https://doi.org/10.1353/ajm.2018.0001

    Article  MathSciNet  MATH  Google Scholar 

  32. Gao, F.: Hecke \(L\)-functions and Fourier coefficients of covering Eisenstein series. https://sites.google.com/site/fangaonus/research

  33. Gao, F.: R-group and Whittaker space of some genuine representations. (preprint)

  34. Gao, F., Shahidi, F., Szpruch, D.: On the local coefficients matrix for coverings of \(\text{ SL }_2\). Geometry, algebra, number theory, and their information technology applications. In: Springer Proc. Math. Stat., vol. 251, pp. 207–244. Springer, Cham (2018)

  35. Gao, F., Shahidi, F., Szpruch, D.: Gamma factor for genuine principal series of covering groups (with an appendix by Caihua Luo). ar**v:1902.02686

  36. Gao, F., Weissman, M.H.: Whittaker models for depth zero representations of covering groups. Int. Math. Res. Not. IMRN 11, 3580–3620 (2019). https://doi.org/10.1093/imrn/rnx235

    Article  MathSciNet  MATH  Google Scholar 

  37. Gelfand, I.M., Kazhdan, D.A.: Representations of the group \(\text{ GL }(n,K)\) where \(K\) is a local field. Lie groups and their representations. In: Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), pp. 95–118. Halsted, New York (1975)

  38. Ginzburg, D.: Non-generic unramified representations in metaplectic covering groups. Isr. J. Math. 226(1), 447–474 (2018). https://doi.org/10.1007/s11856-018-1702-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Heiermann, V., Muić, G.: On the standard modules conjecture. Math. Z. 255(4), 847–853 (2007). https://doi.org/10.1007/s00209-006-0052-9

    Article  MathSciNet  MATH  Google Scholar 

  40. Heiermann, V., Opdam, E.: On the tempered \(L\)-functions conjecture. Am. J. Math. 135(3), 777–799 (2013). https://doi.org/10.1353/ajm.2013.0026

    Article  MathSciNet  MATH  Google Scholar 

  41. Hiller, H.: Geometry of Coxeter groups. Research Notes in Mathematics, vol. 54. Pitman (Advanced Publishing Program), Boston (1982)

    MATH  Google Scholar 

  42. Howe, R., Piatetski-Shapiro, I.I.: A counterexample to the “generalized Ramanujan conjecture” for (quasi-) split groups, Automorphic forms, representations and \(L\)-functions. In: Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., XXXIII, pp. 315–322. Amer. Math. Soc., Providence, RI (1979)

  43. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  44. Joseph, A.: Goldie rank in the envelo** algebra of a semisimple Lie algebra, I. J. Algebra 65(2), 269–283 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kaplan, E.: Doubling constructions and tensor product L-functions: coverings of the symplectic group. ar**v:1902.00880

  46. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kazhdan, D., Lusztig, G.: Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math. 87(1), 153–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Inst. Hautes Études Sci. Publ. Math. 59, 35–142 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Leslie, S.: A generalized theta lifting, CAP representations, and Arthur parameters. ar**v:1703.02597

  50. Lusztig, G.: On a theorem of Benson and Curtis. J. Algebra 71(2), 490–498 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lusztig, G.: Some examples of square integrable representations of semisimple \(p\)-adic groups. Trans. Am. Math. Soc. 277(2), 623–653 (1983)

    MathSciNet  MATH  Google Scholar 

  52. Lusztig, G.: Left Cells in Weyl Groups. Lie Group Representations, I. Lecture Notes in Math, vol. 1024, pp. 99–111. Springer, Berlin (1983)

    Book  Google Scholar 

  53. Lusztig, G.: Characters of Reductive Groups Over a Finite Field. Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton (1984)

    Book  MATH  Google Scholar 

  54. Lusztig, G.: Hecke Algebras with Unequal Parameters. CRM Monograph Series, vol. 18. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

  55. McNamara, P.J.: Principal series representations of metaplectic groups over local fields. Multiple Dirichlet series, L-functions and automorphic forms. In: Progr. Math., vol. 300, pp. 299–327. Birkhäuser/Springer, New York (2012). https://doi.org/10.1007/978-0-8176-8334-413

  56. McNamara, P.J.: The metaplectic Casselman–Shalika formula. Trans. Am. Math. Soc. 368(4), 2913–2937 (2016). https://doi.org/10.1090/tran/6597

    Article  MathSciNet  MATH  Google Scholar 

  57. Mœglin, C., Waldspurger, J.-L.: Modèles de Whittaker dégénérés pour des groupes \(p\)-adiques. Math. Z. 196(3), 427–452 (1987). (French)

    Article  MathSciNet  MATH  Google Scholar 

  58. Reeder, M.: On certain Iwahori invariants in the unramified principal series. Pac. J. Math. 153(2), 313–342 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. Robinson, G.B.: On the representations of the symmetric group. Am. J. Math. 60(3), 745–760 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  60. Robinson, G.B.: On the representations of the symmetric group. II. Am. J. Math. 69, 286–298 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  61. Robinson, G.B.: On the representations of the symmetric group III. Am. J. Math. 70, 277–294 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rodier, F.: Whittaker models for admissible representations of reductive \(p\)-adic split groups. Harmonic analysis on homogeneous spaces. In: Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), pp. 425–430. Amer. Math. Soc., Providence, RI (1973)

  63. Rodier, F.: Décomposition de la série principale des groupes réductifs \(p\)-adiques. Noncommutative harmonic analysis and Lie groups, (Marseille, 1980), Lecture Notes in Math., vol. 880, pp. 408–424. Springer, Berlin-New York (1981) (French)

  64. Rodier, F.: Decomposition of principal series for reductive \(p\)-adic groups and the Langlands’ classification. Operator algebras and group representations, Vol. II, (Neptun, 1980), Monogr. Stud. Math., vol. 18, pp. 86–94. Pitman, Boston, MA (1984)

  65. Rogawski, J.D.: On modules over the Hecke algebra of a \(p\)-adic group. Invent. Math. 79(3), 443–465 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  66. Rohrlich, D.E.: Elliptic curves and the Weil–Deligne group. Elliptic curves and related topics. In: CRM Proc. Lecture Notes, vol. 4, pp. 125–157. Amer. Math. Soc., Providence, RI (1994)

  67. Roichman, Y.: Induction and restriction of Kazhdan–Lusztig cells. Adv. Math. 134(2), 384–398 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Savin, G.: On unramified representations of covering groups. J. Reine Angew. Math. 566, 111–134 (2004)

    MathSciNet  MATH  Google Scholar 

  69. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  70. Shalika, J.A.: The multiplicity one theorem for \(\text{ GL }_{n}\). Ann. Math. (2) 100, 171–193 (1974). https://doi.org/10.2307/1971071

    Article  MathSciNet  Google Scholar 

  71. Shi, J.Y.: The Kazhdan–Lusztig Cells in Certain Affine Weyl Groups. Lecture Notes in Mathematics, vol. 1179. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  72. Srinivasan, B.: The characters of the finite symplectic group \(\text{ Sp }(4,\, q)\). Trans. Am. Math. Soc. 131, 488–525 (1968). https://doi.org/10.2307/1994960

    Article  MathSciNet  MATH  Google Scholar 

  73. Steinberg, R.: Lectures on Chevalley groups, University Lecture Series, vol. 66. American Mathematical Society, Providence, RI (2016)

  74. Suzuki, T.: Metaplectic Eisenstein series and the Bump–Hoffstein conjecture. Duke Math. J. 90(3), 577–630 (1997). https://doi.org/10.1215/S0012-7094-97-09016-5

    Article  MathSciNet  MATH  Google Scholar 

  75. Suzuki, T.: Distinguished representations of metaplectic groups. Am. J. Math. 120(4), 723–755 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  76. Tate, J.T.: Number theoretic background. Automorphic forms, representations and \(L\)-functions. In: Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., XXXIII, pp. 3–26. Amer. Math. Soc., Providence, RI (1979)

  77. Weissman, M.H.: Metaplectic tori over local fields. Pac. J. Math. 241(1), 169–200 (2009). https://doi.org/10.2140/pjm.2009.241.169

    Article  MathSciNet  MATH  Google Scholar 

  78. Weissman, M.H.: Split metaplectic groups and their L-groups. J. Reine Angew. Math. 696, 89–141 (2014). https://doi.org/10.1515/crelle-2012-0111

    Article  MathSciNet  MATH  Google Scholar 

  79. Weissman, M.H.: L-groups and parameters for covering groups. Astérisque 398, 33–186 (2018). (English, with English and French summaries)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Caihua Luo for several discussions on the content of Sect. 3. Thanks are also due to the referee for his or her careful reading and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Gao.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F. Kazhdan–Lusztig representations and Whittaker space of some genuine representations. Math. Ann. 376, 289–358 (2020). https://doi.org/10.1007/s00208-019-01925-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01925-1

Mathematics Subject Classification

Navigation