Log in

Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants

  • Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  • Abreo E, Valle D, González A, Altier N (2021) Control of dam**-off in tomato seedlings exerted by Serratia spp. strains and identification of inhibitory bacterial volatiles in vitro. Syst Appl Microbiol 44(2):126177

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AA, Leinweber P, Kuhn O (2023a) Advances in understanding the phosphate binding to soil constituents: a computational chemistry perspective. Sci Total Environ 887:163692

    Article  CAS  PubMed  Google Scholar 

  • Ahmed R, Zia-ur-Rehman M, Sabir M, Usman M, Rizwan M, Ahmad Z, Alharby HF, Al-Zahrani HS, Alsamadany H, Aldhebiani AY, Alzahrani YM, Bamagoos AA (2023b) Differential response of nano zinc sulphate with other conventional sources of Zn in mitigating salinity stress in rice grown on saline-sodic soil. Chemosphere 327:138479

    Article  CAS  PubMed  Google Scholar 

  • Akhter MS, Noreen S, Shah KH (2023) Silicon supplement improves growth and yield under salt stress by modulating ionic homeostasis and some physiological indices in Hordeum vulgare L. J Soil Sci Plant Nut 23(2):1694–1712

    Article  CAS  Google Scholar 

  • Alam P, Balawi TA, Ahmad P (2023) Gibberellic acid and silicon ameliorate NaCl toxicity in Brassica juncea: possible involvement of antioxidant system and ascorbate-glutathione cycle. Plants-Basel 12(6):1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander A, Singh VK, Mishra A (2020) Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Front Microbiol 11:568289

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of damages caused by high salinity stress by plant growth-promoting bacterial endophytes. Plant Physiol Bioch 80:160–167

    Article  CAS  Google Scholar 

  • Ali B, Hafeez A, Ahmad S, Javed MA, Sumaira Afridi MS, Dawoud TM, Almaary KS, Muresan CC, Marc RA, Alkhalifah DHM, Selim S (2022) Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Front Plant Sci 13:921668

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali T, Akhtar J, Anwar-ul-haq M, Maqsood M (2024) Effects of znso4 on growth some key physiological processes and ionic homeostasis of different bread wheat (triticumaestivum L.) genotypes under salinity stress. Pak J Bot 56(3):815–826

    Article  CAS  Google Scholar 

  • Almeida OAC, de Araujo NO, Mulato ATN, Persinoti GF, Sforça ML, Calderan-Rodrigues MJ, Oliveira JVD (2023) Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. Front Plant Sci 13:1056082

    Article  PubMed  PubMed Central  Google Scholar 

  • Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P (2021) Ion homeostasis for salinity tolerance in plants: a molecular approach. Physiol Plantarum 171(4):578–594

    Article  CAS  Google Scholar 

  • Ansari FA, Ahmad I, Pichtel J, Husain FM (2024) Pantoea agglomerans FAP10: a novel biofilm-producing PGPR strain improves wheat growth and soil resilience under salinity stress. Environ Exp Bot 222:105759

    Article  CAS  Google Scholar 

  • Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82

    Article  Google Scholar 

  • Aycan M, Baslam M, Asiloglu R, Mitsui T, Yildiz M (2021) Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms. Plant Physiol Bioch 166:314–327

    Article  CAS  Google Scholar 

  • Babar M, Saif-ur-Rehman Rasul S, Aslam K, Abbas R, Athar HUR, Manzoor I, Hanif MK, Naqqash T (2021) Mining of halo-tolerant plant growth promoting rhizobacteria and their impact on wheat (Triticum aestivum L.) under saline conditions. J King Saud Univ Sci 33(3):101372

    Article  Google Scholar 

  • Cao MY, Narayanan M, Shi XJ, Chen XP, Li ZL, Ma Y (2022) Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ Res 217:114924

    Article  PubMed  Google Scholar 

  • Chapagain S, Pruthi R, Singh L, Subudhi PK (2024) Comparison of the genetic basis of salt tolerance at germination, seedling, and reproductive stages in an introgression line population of rice. Mol Biol Rep 51(1):252

    Article  CAS  PubMed  Google Scholar 

  • Checchio MV, Alves RD, de Oliveira KR, Moro GV, dos Santos DMM, Gratao PL (2021) Enhancement of salt tolerance in corn using Azospirillum brasilense: an approach on antioxidant systems. J Plant Res 134(6):1279–1289

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Liu Q, Chen D, Wu Y, Hamid Y, Lin Q, Zhang S, Feng Y, He Z, Yin X, Yang X (2024) Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by sedum alfredii Hance: a study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. Sci Total Environ 932:173029

    Article  CAS  PubMed  Google Scholar 

  • Cherchali A, Boukhelata N, Kaci Y, Abrous-Belbachir O, Djebbar R (2019) Isolation and identification of a phosphate-solubilizing Paenibacillus polymyxa strain GOL 0202 from durum wheat (Triticum durum Desf.) rhizosphere and its effect on some seedlings morphophysiological parameters. Biocatal Agric Biotechnol 19:101087

    Article  Google Scholar 

  • Clavo RF, Valladolid-Suyon E, Reinoza-Farronan K, Ortega CA, Monteiro PHR, Apaza-Castillo GA, Zuniga-Valdera G, Garboggini FF, Iglesias-Osores S, Carreno-Farfan CR (2023) Rhizobacterial isolates from Prosopis limensis promote the growth of Raphanus sativus L. under salt stress. Curr Microbiol 80(8):269

    Article  Google Scholar 

  • Cortés-Patiño S, Vargas C, Alvarez-Flórez F, Bonilla R, Estrada-Bonilla G (2021) Potential of Herbaspirillum and Azospirillum consortium to promote growth of perennial ryegrass under water deficit. Microorganisms 9:91

    Article  PubMed  PubMed Central  Google Scholar 

  • de Carvalho Neta SJ, Araújo VLVP, Fracetto FJC, da Silva CCG, de Souza ER, Silva WR, Lumini E, Fracetto GGM (2024) Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress. Microbiol Res 284:127708

    Article  PubMed  Google Scholar 

  • Delgado-González CR, Madariaga-Navarrete A, Rodríguez-Laguna R, Capulín-Grande J, Sharma A, Islas-Pelcastre M (2022) Microorganism rhizosphere interactions and their impact on the bioremediation of saline soils: a review. Int J Environ Sci Te 19(12):12775–12790

    Article  Google Scholar 

  • Desai S, Mistry J, Shah F, Chandwani S, Amaresan N, Supriya NR (2023) Salt-tolerant bacteria enhance the growth of mung bean (Vigna radiata L.) and uptake of nutrients, and mobilize sodium ions under salt stress condition. Int J Phytoremediat 25(1):66–73

    Article  CAS  Google Scholar 

  • Dong H, Wang Y, Di Y, Qiu Y, Ji Z, Zhou T, Shen S, Du N, Zhang T, Dong X, Guo Z, Piao F, Li Y (2024) Plant growth-promoting rhizobacteria pseudomonas aeruginosa HG28–5 improves salt tolerance by regulating Na+/K+ homeostasis and ABA signaling pathway in tomato. Microbiol Res 4(283):127707

    Article  Google Scholar 

  • Du Y, Liu X, Zhang L, Zhou W (2023) Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: evidence from a global meta-analysis. Sci Total Environ 880:163226

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth S, Alam P, Alyemeni MN, Ahmad P (2018) Interactive effects of nutrients and Bradyrhizobium japonicum on the growth and root architecture of soybean (Glycine max L.). Front Microbiol 9:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot 159:55–65

    Article  CAS  Google Scholar 

  • Fatima T, Mishra I, Verma R, Arora NK (2020) Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. Biotech 10(8):361

    Google Scholar 

  • Feng G, Wu Y, Yang C, Zhang Q, Wang S, Dong M, Wang Y, Qi H, Guo L (2024) Effects of coastal saline-alkali soil on rhizosphere microbial community and crop yield of cotton at different growth stages. Front Microbiol 19(15):1359698

    Article  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29:409–420

    Article  CAS  Google Scholar 

  • Fransgo K, Lin LC, Rho H (2024) Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: impacts on blueberry growth and heat resilience. Plant Signal Behav 19(1):2329842

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2022) Recent advances in bacterial amelioration of plant drought and salt stress. Biol-Basel 11:437

    Article  CAS  Google Scholar 

  • García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT (2021) Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev 87:421–466

    Article  Google Scholar 

  • Ghazala I, Chiab N, Saidi MN, Gargouri-Bouzid R (2023) The plant growth-promoting bacteria strain Bacillus mojavensis I4 enhanced salt stress tolerance in durum wheat. Curr Microbiol 80(5):178

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Roychoudhury A (2024) Molecular basis of salicylic acid–phytohormone crosstalk in regulating stress tolerance in plants. Braz J Bot

  • Gonzalez F, Santander C, Ruiz A, Perez R, Moreira J, Vidal G, Aroca R, Santos C, Cornejo P (2023) Inoculation with Actinobacteria spp isolated from a hyper-arid environment enhances tolerance to salinity in lettuce plants (Lactuca sativa L.). Plants-Basel 12:2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami SK, Kashyap AS, Kumar R, Gujjar RS, Singh A, Manzar N (2024) Harnessing rhizospheric microbes for eco-friendly and sustainable crop production in saline environments. Curr Microbiol 81:14

    Article  CAS  Google Scholar 

  • Gul S, Javed S, Azeem M, Aftab A, Anwaar N, Mehmood T, Zeshan B (2023) Application of Bacillus subtilis for the alleviation of salinity stress in different cultivars of wheat (Tritium aestivum L.). Agronomy Basel 13:437

    Article  CAS  Google Scholar 

  • Guo X, Zhang M, Zhu M, Long J, Wei Z, Li J, Zhou B, Ai Z, Deng H (2022) Comparative transcriptomic analysis of the super hybrid rice Chaoyouqianhao under salt stress. Bmc Plant Biol 22(1):233

    Article  CAS  Google Scholar 

  • Guo B, Lu M, Fan Y, Wu H, Yang Y, Wang C (2023) A novel remote sensing monitoring index of salinization based on three-dimensional feature space model and its application in the yellow river Delta of China. Geomat Nat Haz Risk 14:95–116

    Article  Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Pandey S, Kotra V, Kumar A (2023) Assessing the role of ACC deaminase-producing bacteria in alleviating salinity stress and enhancing zinc uptake in plants by altering the root architecture of French bean (Phaseolus vulgaris) plants. Planta 258(1):3

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Fu Y, Qiu R, Ning H, Liu H, Li C, Gao Y (2023) Carbon amendments shape the bacterial community structure in salinized farmland soil. Microbiol Spectr 11(1):1–17

    Article  Google Scholar 

  • He A, Niu S, Yang D, Ren W, Zhao L, Sun Y, Meng L, Zhao Q, Paré PW, Zhang J (2021) Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiol Bioch 161:74–85

    Article  CAS  Google Scholar 

  • Hernández-Canseco J, Bautista-Cruz A, Sánchez-Mendoza S, Aquino-Bolaños T, Sánchez-Medina PS (2022) Plant growth-promoting halobacteria and their ability to protect crops from abiotic stress: An eco-friendly alternative for saline soils. Agronomy-Basel 12(4):804

    Article  Google Scholar 

  • Hussain I, Hasnain Z, Zafar S, Nazir MJ, Jatoi SA (2024) Salt induced positive and negative effects on germination and other physiological traits of sorghum vulgare seedlings. Pak J Bot 56(3):807–814

    Article  CAS  Google Scholar 

  • Ilahi H, Zampieri E, Sbrana C, Brescia F, Giovannini L, Mahmoudi R, Gohari G, El Idrissi MM, Alfeddy MN, Schillaci M, Ouahmane L, Calvo A, Sillo F, Fotopoulos V, Balestrini R, Mnasri B (2024) Impact of two Erwinia sp. on the response of diverse Pisum sativum genotypes under salt stress. Physiol Mol Biol Plants 30(2):249–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilangumaran G, Smith LD (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Imran M, Mpovo CL, Khan MA, Shaffique S, Ninson D, Bilal S, Khan M, Kwon EH, Kang SM, Yun BW, Lee IJ (2023) Synergistic effect of melatonin and Lysinibacillus fusiformis L. (PLT16) to mitigate drought stress via regulation of hormonal antioxidants system, and physio-molecular responses in soybean plants. Int J Mol Sci 24:8489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam S, Mohammad F, Siddiqui MH, Kalaji HM (2023) Salicylic acid and trehalose attenuate salt toxicity in Brassica juncea L. by activating the stress defense mechanism. Environ Pollut 326:121467

    Article  CAS  PubMed  Google Scholar 

  • James N, Umesh M, Saro**i S, Shanmugam S, Nasif O, Alharbi SA, Chi NTL, Brindhadevi K (2023) Unravelling the potential plant growth activity of halotolerant Bacillus licheniformis NJ04 isolated from soil and its possible use as a green bioinoculant on Solanum lycopersicum L. Environ Res 216:114620

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Wang XH, Song X, Zhou QS, Li CH, Chen ZZ, Gao QX, Li HY, Li JT, Zhang PC, Cao H (2021) Effect of Bacillus velezensis JC-K3 on endophytic bacterial and fungal diversity in wheat under salt stress. Front Microbiol 12:802054

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji C, Chen Z, Kong X, **n Z, Sun F, **ng J, Li C, Li K, Liang Z, Cao H (2022a) Biocontrol and plant growth promotion by combined Bacillus spp. inoculation affecting pathogen and AMF communities in the wheat rhizosphere at low salt stress conditions. Front Plant Sci 13:1043171

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji C, Tian HM, Wang XH, Song X, Ju RC, Li HY, Gao QX, Li CH, Zhang PC, Li JT, Hao LP, Wang CD, Zhou YY, Xu RP, Liu Y, Du JF, Liu XL (2022b) Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in wheat (Triticum aestivum). Biomed Res Int 2022:9506227

    Article  PubMed  PubMed Central  Google Scholar 

  • **g Y, Shi L, Li X, Zheng H, Gao J, Wang M, He L, Zhang W (2019) OXS2 is required for salt tolerance mainly through associating with salt inducible genes, CA1 and Araport11, in Arabidopsis. Sci Rep-Uk 9:20341

    Article  CAS  Google Scholar 

  • Joshi G, Kumar V, Brahmachari SK (2021) Screening and identification of novel halotolerant bacterial strains and assessment for insoluble phosphate solubilization and IAA production. Bull Natl Res Centre 45:83

    Article  Google Scholar 

  • Kalleku JN, Ihsan S, Al-Azzawi TNI, Khan M, Hussain A, Chebitok F, Das AK, Moon YS, Mun BG, Lee IJ, Ali S, Yun BW (2024) Halotolerant Pseudomonas koreensis S4T10 mitigate salt and drought stress in Arabidopsis thaliana. Physiol Plant 176(2):e14258

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ (2020) Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biol 22(5):850–862

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Sahile AA, Jan R, Asaf S, Hamayun M, Imran M, Adhikari A, Kang SM, Kim KM, Lee IJ (2021) Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biol 21(1):176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khumairah FH, Setiawati MR, Fitriatin BN, Simarmata T, Alfaraj S, Ansari MJ, Enshasy HAE, Sayyed RZ, Najafi S (2022) Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Front Microbiol 13:905210

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyro HW, Huchzermeyer B (2022) From soil amendments to controlling autophagy: supporting plant metabolism under conditions of water shortage and salinity. Plants-Basel 11:1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Sharma PK (2020) Soil salinity and food security in India. Front Sustain Food Syst 4:533781

    Article  Google Scholar 

  • Kumar A, Singh S, Mukherjee A, Rastogi RP, Verma JP (2021) Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiol Res 242:126616

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Raghuvanshi N, Pandey AK, Kumar A, Thoday-Kennedy E, Kant S (2023) Role of halotolerant plant growth-promoting rhizobacteria in mitigating salinity stress: recent advances and possibilities. Agric-Basel 13(1):168

    CAS  Google Scholar 

  • Kumawat KC, Nagpal S, Sharma P (2022) Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: a review. Pedosphere 32(2):223–245

    Article  Google Scholar 

  • Kumawat KC, Sharma B, Nagpal S, Kumar A, Tiwari S, Nair RM (2023) Plant growth-promoting rhizobacteria: salt stress alleviators to improve crop productivity for sustainable agriculture development. Front Plant Sci 13:1101862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusale SP, Attar YC, Sayyed RZ, El Enshasy H, Hanapi SZ, Ilyas N, Elgorban AM, Bahkali AH, Marraiki N (2021) Inoculation of Klebsiella variicola alleviated salt stress and improved growth and nutrients in wheat and maize. Agronomy-Basel 11(5):927

    Article  CAS  Google Scholar 

  • Latif A, Ahmad R, Ahmed J, Shah MM, Ahmad R, Hassan A (2023) Novel halotolerant rhizobacterial strains mitigated the salt stress in-vitro and in-vivo and improved the growth of tomato plants. Sci Hortic-Amsterdam 319:112115

    Article  CAS  Google Scholar 

  • Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J (2018) Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int J Mol Sci 19(2):443

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang C, Huo Z (2020) Optimizing irrigation and drainage by considering agricultural hydrological process in arid farmland with shallow groundwater. J Hydrol 585:124785

    Article  Google Scholar 

  • Li S, Chang L, Sun R, Dong J, Zhong C, Gao Y, Zhang H, Wei L, Wei Y, Zhang Y, Wang G, Sun J (2022a) Combined transcriptomic and metabolomic analysis reveals a role for adenosine triphosphate-binding cassette transporters and cell wall remodeling in response to salt stress in strawberry. Front Plant Sci 13:996765

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhao L, Huang M, Chen L, ** S (2022b) Application of a vertical “electric sieve” to mitigate and prevent salinization in coastal soil. Land Degrad Dev 33:2477–2486

    Article  Google Scholar 

  • Liu X, Luo Y, Li Z, Wang J, Wei G (2017) Role of exopolysaccharide in salt stress resistance and cell motility of Mesorhizobium alhagi CCNWXJ12-2T. Appl Microbiol Biot 101(7):2967–2978

    Article  CAS  Google Scholar 

  • Liu X, Roux XL, Salles JF (2022) The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25(3):103821. https://doi.org/10.1016/j.isci.2022.103821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd GR, Uesugi A, Gleadow RM (2021) Effects of salinity on the growth and nutrition of taro (Colocasia esculenta): implications for food security. Plants-Basel 10(11):2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Chang M, Han X, Wang Q, Wang J, Yang H, Guan Q, Dai S (2021) Beneficial effects of endophytic Pantoea ananatis with ability to promote rice growth under saline stress. J Appl Microbiol 131(4):1919–1931

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Wang K, Zhu L, Zhang N, Si H (2024) StMAPKK5 positively regulates response to drought and salt stress in potato. Int J Mol Sci 25(7):3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbeinduced tolerance in plants. Front Plant Sci 11:591911

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Pan J, Xue X, Zhang J, Guo Q (2022) A bibliometric review of plant growth-promoting rhizobacteria in salt-affected soils. Agronomy-Basel 12:2304

    Article  Google Scholar 

  • Madadi K, Ahmadabadi M, Pazhouhandeh M (2022) Heterologous expression of Arabidopsis SOS3 increases salinity tolerance in Petunia. Mol Biol Rep 49(7):6553–6562

    Article  CAS  PubMed  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud NE, Abdel-Gawad H, Abdelhameed RM (2024) Post-synthetic modification of nano-chitosan using gibberellic acid: Foliar application on sorghum under salt stress conditions and estimation of biochemical parameters. Plant Physiol Biochem 211:108655

    Article  CAS  PubMed  Google Scholar 

  • Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, Kumar D, Bharadwaj V, Singh B, Singh RK, Aftab T (2023) Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. J Plant Growth Regul 42(2):554–574

    Article  CAS  Google Scholar 

  • Marghoob MU, Nawaz A, Ahmad M, Waheed MQ, Khan MH, Imtiaz M, Islam EU, Imran A, Mubeen F (2023) Assessment of halotolerant bacterial and fungal consortia for augmentation of wheat in saline soils. Front Microbiol 14:1207784

    Article  PubMed  PubMed Central  Google Scholar 

  • Masmoudi F, Alsafran M, Jabri HA, Hosseini H, Trigui M, Sayadi S, Tounsi S, Saadaoui I (2023) Halobacteria-based biofertilizers: a promising alternative for enhancing soil fertility and crop productivity under biotic and abiotic stresses-a review. Microorganisms 11(5):1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinzer M, Ahmad N, Nielsen BL (2023) Halophilic plant-associated bacteria with plant-growth-promoting potential. Microorganisms 11:2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Mishra J, Arora NK (2021) Plant growth promoting bacteria for combating salinity stress in plants–recent developments and prospects: a review. Microbiol Res 252:126861

    Article  CAS  PubMed  Google Scholar 

  • Moon YS, Khan M, Khan MA, Ali S (2023) Ameliorative symbiosis of Serratia fonticola (S1T1) under salt stress condition enhance growth-promoting attributes of Cucumis sativus L. Symbiosis 89(3):283–297

    Article  CAS  Google Scholar 

  • Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Khan MAR, Mochida K, Tran LSP (2022) Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol Bioch 186:279–289

    Article  CAS  Google Scholar 

  • Neshat M, Abbasi A, Hosseinzadeh A, Sarikhani MR, Chavan DD, Rasoulnia A (2022) Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol Mol Biol Pla 28(2):347–361

    Article  CAS  Google Scholar 

  • Nozari RM, Ortolan F, Astarita LV, Santarém ER (2021) Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Braz J Microbiol 52(3):1371–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunsiji E, Umebese C, Stabentheiner E, Iwuala E, Odjegba V, Oluwajobi A (2023) Salicylic acid enhances growth, photosynthetic performance and antioxidant defense activity under salt stress in two mungbean [Vigna radiata (L.) R. Wilczek] variety. Plant Signal Behav 18(1):2217605

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan J, Peng F, Xue X, You Q, Zhang W, Wang T, Huang C (2019) The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis. Sustain-Basel 11:378

    Article  CAS  Google Scholar 

  • Patel P, Gajjar H, Joshi B, Krishnamurthy R, Amaresan N (2022) Inoculation of salt-tolerant Acinetobacter sp (RSC9) improves the sugarcane (Saccharum sp. Hybrids) growth under salinity stress condition. Sugar Tech 24(2):494–501

    Article  Google Scholar 

  • Peng M, Jiang Z, Zhou F, Wang Z (2023a) From salty to thriving: plant growth promoting bacteria as nature’s allies in overcoming salinity stress in plants. Front Microbiol 14:1169809

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng XY, Wang QL, Lang DY, Li Y, Zhang WJ, Zhang XH (2023b) Bacillus cereus G2 facilitates n cycle in soil, further improves n uptake and assimilation, and accelerates proline and glycine betaine metabolisms of Glycyrrhiza uralensis subjected to salt stress. J Agric Food Chem 71:15485–15496

    Article  CAS  PubMed  Google Scholar 

  • Raghuwanshi R, Prasad JK (2018) Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. Soil Biol 52:303–321

    Article  CAS  Google Scholar 

  • Rani V, Rana S, Muthamilarasan M, Joshi DC, Yadav D (2024) Expression profiling of nuclear factor-Y (NF-Y) transcription factors during dehydration and salt stress in finger millet reveals potential candidate genes for multiple stress tolerance. Planta 259(6):136

    Article  CAS  PubMed  Google Scholar 

  • Rashmi I, Meena BP, Rajendiran S, Jayaraman S, Joshy CG, Ali S, Mina BL, Kumar K, Kumar A, Kumawat A, Kala S (2024) Can gypsum and organic amendments achieve sustainability, productivity and maintain soil health under soybean-mustard crop** in sodic soils of western India. Soil till Res 240:106075

    Article  Google Scholar 

  • Reed L, Glick BR (2023) The recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agric-Basel 13(5):1089

    CAS  Google Scholar 

  • Rojas-Solis D, Rodríguez YMG, Larsen J, Santoyo G, Lindig-Cisneros R (2023) Growth promotion traits and emission of volatile organic compounds of two bacterial strains stimulate growth of maize exposed to heavy metals. Rhizosphere-Neth 27:100739

    Article  Google Scholar 

  • Rosales MA, Franco-Navarro JD, Peinado-Torrubia P, Diaz-Rueda P, Alvarez R, Colmenero-Flores JM (2020) Chloride improves nitrate utilization and NUE in plants. Front Plant Sci 11:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Saberi-Riseh R, Fathi F, Moradzadeh-Eskandari M (2020) Effect of some Pseudomonas fluorescens and Bacillus subtilis strains on osmolytes and antioxidants of cucumber under salinity stress. J Crop Prot 9:1–16

    Google Scholar 

  • Safdarian M, Askari H, Nematzadeh G, Sofo A (2020) Halophile plant growth-promoting rhizobacteria induce salt tolerance traits in wheat seedlings (Triticum aestivum L.). Rhizosphere-Neth. 30(5):684–693

    CAS  Google Scholar 

  • Sagar A, Rai S, Ilyas N, Sayyed RZ, Al-Turki AI, Enshasy HAE, Simarmata T (2022) Halotolerant rhizobacteria for salinity-stress mitigation: diversity, mechanisms and molecular approaches. Sustainability-Basel 14(1):490

    Article  CAS  Google Scholar 

  • Sahab S, Suhani I, Srivastava V, Chauhan PS, Singh RP, Prasad V (2021) Potential risk assessment of soil salinity to agro-ecosystem sustainability: current status and management strategies. Sci Total Environ 764:144164

    Article  CAS  PubMed  Google Scholar 

  • Saidi S, Cherif-Silini H, Chenari Bouket A, Silini A, Eshelli M, Luptakova L, Alenezi FN, Belbahri L (2021) Improvement of Medicago sativa crops productivity by the co-inoculation of Sinorhizobium meliloti-Actinobacteria under salt stress. Curr Microbiol 78(4):1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez P, Castro-Cegri A, Sierra S, Garrido D, Llamas I, Sampedro I, Palma F (2023) The synergy of halotolerant PGPB and mauran mitigates salt stress in tomato (Solanum lycopersicum) via osmoprotectants accumulation. Physiol Plantarum 175:e14111

    Article  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2022) Plant growth promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). J Plant Growth Regul 41(2):647–656

    Article  CAS  Google Scholar 

  • Saranya K, Sundaramanickam A, Manupoori S, Kanth SV (2022) Screening of multi-faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition. Microbiol Res 261:127080

    Article  CAS  PubMed  Google Scholar 

  • Shabaan M, Asghar HN, Zahir ZA, Zhang X, Sardar MF, Li H (2022) Salt-tolerant PGPR confer salt tolerance to maize through enhanced soil biological health, enzymatic activities, nutrient uptake and antioxidant defense. Front Microbiol 13:901865

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaffique S, Khan MA, Wani SH, Pande A, Imran M, Kang SM, Rahim W, Khan SA, Bhatta D, Kwon EH, Lee IJ (2022) A review on the role of endophytes and plant growth promoting rhizobacteria in mitigating heat stress in plants. Microorganisms 10(7):1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ (2023a) Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. Front Plant Sci 14:1237295

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaffique S, Hussain S, Kang SM, Imran M, Kwon EH, Khan MA, Lee IJ (2023b) Recent progress on the microbial mitigation of heavy metal stress in soybean: overview and implications. Front Plant Sci 14:1188856

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaffique S, Farooq M, Kang SM, Lee IJ (2024) Recent advances in biochemical reprogramming network under drought stress in soybean. J Soil Sci Plant Nut. https://doi.org/10.1007/s42729-024-01711-2

    Article  Google Scholar 

  • Shahid M, Al-Khattaf FS, Danish M, Zeyad MT, Atef Hatamleh A, Mohamed A, Ali S (2022) PGPR Kosakonia Radicincitans KR-17 increases the salt tolerance of radish by regulating ion-homeostasis, photosynthetic molecules, redox potential, and stressor metabolites. Front Plant Sci 13:919696

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahrajabian MH, Petropoulos SA, Sun WL (2023) Survey of the influences of microbial biostimulants on horticultural crops: case studies and successful paradigms. Horticulturae 9(2):193

    Article  Google Scholar 

  • Sheldon AR, Dalal RC, Kirchhof G, Kopittke PM, Menzies NW (2017) The effect of salinity on plant-available water. Plant Soil 418(1–2):477–491

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shultana R, Zuan ATK, Naher UA, Islam AKMM, Rana MM, Rashid MH, Irin IJ, Islam SS, Rim AA, Hasan AK (2022) The PGPR mechanisms of salt stress adaptation and plant growth promotion. Agronomy-Basel 12(10):2266

    Article  CAS  Google Scholar 

  • Singh RP, Pandey DM, Jha PN, Ma Y (2022) ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant. PLoS ONE 17(5):e0267127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohaib M, Zahir ZA, Khan MY, Ans M, Asghar HN, Yasin S, Al-Barakah FNI (2020) Comparative evaluation of different carrier-based multi-strain bacterial formulations to mitigate the salt stress in wheat. Saudi J Biol Sci 27(3):777–787

    Article  CAS  PubMed  Google Scholar 

  • Soldan R, Mapellia F, Crottia E, Schnell S, Daffonchio D, Marascoc R, Fusic M, Borina S, Cardinale M (2019) Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 223:33–43

    Article  PubMed  Google Scholar 

  • Stavi I, Thevs N, Priori S (2021) Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front Env Sci-Switz 9:712831

    Article  Google Scholar 

  • Su X, Wang Y, Wang G, Zhang Y, Gong X, Yu J, Gou F, Lyu H (2022) Assessment and prediction of coastal saline soil improvement effects combining substrate amendments and salt barrier materials in typical region of the Yangtze River Delta. Soil till Res 223:105483

    Article  Google Scholar 

  • Sun L, Lei P, Wang Q, Ma J, Zhan Y, Jiang K, Xu Z, Xu H (2020) The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides. Front Microbiol 10:3112

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Tahir HAS, Gu Q, Wu H, Raza W, Hanif A, Wu L, Colman MV, Gao X (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Teo HM, Aziz A, Wahizatul AA, Bhubalan K, Siti NMS, Muhamad SCI, Ng LC (2022) Setting a plausible route for saline soil-based crop cultivations by application of beneficial halophyte-associated bacteria: A review. Microorganisms 10:657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur MP, Van der Putten WH, Cobben MMP, Kleunen MV, Geisen S (2019) Microbial invasions in terrestrial ecosystems. Nat Rev Microbiol 17(10):621–631

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva A, Galyamova M, Sedykh S (2022) Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants-Basel 11(16):2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Vimal SR, Patel VK, Singh JS (2019) Plant growth promoting Curtobacterium albidum strain SRV4: An agriculturally important microbe to alleviate salinity stress in paddy plants. Ecol Indic 105:553–562

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang G, Zhang L, Zhang S, Li B, Li J, Wang X, Zhang J, Guan C, Ji J (2023) The combined use of a plant growth promoting Bacillus sp. strain and GABA promotes the growth of rice under salt stress by regulating antioxidant enzyme system, enhancing photosynthesis and improving soil enzyme activities. Microbiol Res 266:127225

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen Z, Sui N (2024) Sensitivity and responses of chloroplasts to salt stress in plants. Front Plant Sci 15:1374086

    Article  PubMed  PubMed Central  Google Scholar 

  • **ong YW, Gong Y, Li XW, Chen P, Ju XY, Zhang CM, Yuan B, Lv ZP, **ng K, Qin S (2019) Enhancement of growth and salt tolerance of tomato seedlings by a natural halotolerant actinobacterium Glutamicibacter halophytocola KLBMP 5180 isolated from a coastal halophyte. Plant Soil 445(1–2):307–322

    Article  CAS  Google Scholar 

  • **ong YW, Ju XY, Li XW, Gong Y, Xu MJ, Zhang CM, Yuan B, Lv ZP, Qin S (2020) Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth-promoting endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180. Int J Biol Macromol 153:1176–1185

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Akhtar SS, Fu Q, Naveed M, Iqbal S, Roitsch T, Jacobsen SE (2020) Burkholderia phytofirmans PsJN stimulate growth and yield of quinoa under salinity stress. Plants-Basel 9(6):672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018) Halotolerant plant growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ Sci Pollut R 25:236–250

    Article  Google Scholar 

  • Zhang W, Zheng L, Lang D, Zhang X, Ma X, Li X, Zhang X (2023) Eco-friendly bio-encapsulation from sodium alginate-trehalose-kaolin and its performance evaluation in improving plant growth under salt or/and drought conditions. Int J Biol Macromol 225:123–134

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Ma X, Lang D, Zhang X, Zhou L, Wang L, Zhang X (2022) Encapsulation of Bacillus pumilus G5 from polyvinyl alcohol-sodium alginate (PVA-SA) and its implications in improving plant growth and soil fertility under drought and salt soil conditions. Int J Biol Macromol 209:231–243

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Li Z, Zhang Z, You L, Xu L, Huang H, Wang X, Gao Y, Cui X (2021) Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. Sci Total Environ 797:149190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Guizhou Provincial Basic Research Program (Natural Science) [No. Qiankehe Foundation-ZK (2024) General 089], Guizhou Provincial Department of Education Youth Science and Technology Talent Development Project [No. Qianjiaoji (2024) 35], Scientific Research Innovation Team Project of Guizhou University [No. Guidakechuangtuan (2024) 06] and Special Project of Natural Science Foundation of Guizhou University [No. Gui Da Te Gang He Zi (2023) 16].

Funding

Guizhou Provincial Basic Research Program (Natural Science) [No. Qiankehe Foundation-ZK (2024) General 089], Guizhou Provincial Department of Education Youth Science and Technology Talent Development Project [No. Qianjiaoji (2024) 35], Scientific Research Innovation Team Project of Guizhou University [No. Guidakechuangtuan (2024) 06], Special Project of Natural Science Foundation of Guizhou University [No. Gui Da Te Gang He Zi (2023) 16].

Author information

Authors and Affiliations

Authors

Contributions

Xue **e : Visualization, Data curation, Writing - original draft, Writing - review and editing, Formal analysis. Longzhan Gan: Supervision, Resources, Conceptualization, Funding acquisition, Formal analysis, Writing-review and editing. Chengyang Wang : Visualization, Formal analysis. Tengxia He: Supervision, Resources, Writing-review and editing.

Corresponding authors

Correspondence to Longzhan Gan or Tengxia He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, X., Gan, L., Wang, C. et al. Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants. Arch Microbiol 206, 341 (2024). https://doi.org/10.1007/s00203-024-04071-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-04071-8

Keywords

Navigation