Plant Growth-Promoting Bacteria as Biostimulants of Crops in Saline Agroecosystems

  • Chapter
  • First Online:
Microbial BioTechnology for Sustainable Agriculture Volume 1

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 33))

  • 790 Accesses

Abstract

Economy of many countries in the world hinges on the agriculture and thus directly or indirectly on soil quality. Soil salinity is one of the major abiotic constraints negatively impacting the agricultural productivity in arid and semiarid regions. Physical and chemical amendments (irrigation and leaching with chemicals) used to reclaim soil salinization pollute groundwater, waterbodies, and aquatic life. Use of plant growth-promoting bacteria (PGPB) for amelioration of salt stress in soil is a sustainable and ecofriendly measure, which not only reconciles saline soil but also augments nutritional values in soil. PGPB use array of mechanisms to promote growth and endurance in plants by minimizing the adverse effect of salinity. PGPB can enhance the expression of various salt stress-related genes in plants that supplement growth and yield under salinity. This chapter focuses on the effects of salinity on agroecosystems and role of PGPB in alleviation of salt stress in plants. The chapter also emphasizes on the utilization of PGPB-based biostimulants in improvising soil health and strengthen plant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Global agricultural productivity is growing at an annual rate of 1.63% which is lesser than the required, i.e., 1.73% to sustainably produce food for ten billion population in 2050.

  2. 2.

    http://www.fao.org/3/y4252e/y4252e06.htm

References

  • Abd-Alla MH, Nafady NA, Bashandy SR, Hassan AA (2019) Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 10:100148

    Article  Google Scholar 

  • Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13(1):37–44

    Article  CAS  Google Scholar 

  • Abdel Latef AAH, Omer AM, Badawy AA, Osman MS, Ragaey MM (2021) Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown in saline soil. Plants 10:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari A, Khan MA, Lee KE, Kang SM, Dhungana SK, Bhusal N, Lee IJ (2020) The halotolerant Rhizobacterium—Pseudomonas koreensis MU2 enhances inorganic silicon and phosphorus use efficiency and augments salt stress tolerance in soybean (Glycine max L.). Microorganisms 8(9):1256

    Article  CAS  PubMed Central  Google Scholar 

  • Adnan M, Fahad S, Zamin M, Shah S, Mian IA, Danish S et al (2020) Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants J 9(7):900

    Article  CAS  Google Scholar 

  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Chaudhary HJ (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    Article  CAS  PubMed  Google Scholar 

  • Al Kahtani MD, Attia KA, Hafez YM, Khan N, Eid AM, Ali MA, Abdelaal KA (2020) Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy 10:1180

    Article  CAS  Google Scholar 

  • AlAli HA, Khalifa A, Al-Malki M (2021) Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus. S Afr J Bot 139:200–209

    Article  CAS  Google Scholar 

  • Alaylar B, Egamberdieva D, Gulluce M, Karadayi M, Arora NK (2020) Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World J Microbiol Biotechnol 36(7):93

    Article  CAS  PubMed  Google Scholar 

  • Arora NK (2013) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi

    Book  Google Scholar 

  • Arora NK (2015) Plant microbes symbiosis: applied facets. Springer, New Delhi

    Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer Verlag, Berlin, Heidelberg, pp 239–258

    Chapter  Google Scholar 

  • Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R et al (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82

    Article  CAS  Google Scholar 

  • Arora NK, Egamberdieva D, Mehnaz S, Li W-J, Mishra I (2021) Editorial: salt tolerant Rhizobacteria: for better productivity and remediation of saline soils. Front Microbiol 12:660075

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashfaq M, Hassan HM, Ghazali AHA, Ahmad M (2020) Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 192(11):1–20

    Article  CAS  Google Scholar 

  • Ayuso-Calles M, García-Estévez I, Jiménez-Gómez A, Flores-Félix JD, Escribano-Bailón MT, Rivas R (2020) Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods 9:1166

    Google Scholar 

  • Ayyam V, Palanivel S, Chandrakasan S (2019) Coastal ecosystems of the tropics-adaptive management. Springer, Singapore

    Book  Google Scholar 

  • Azarmi F, Mozaffari V, Hamidpour M, Abbaszadeh-Dahaji P (2016) Interactive effect of fluorescent pseudomonads rhizobacteria and Zn on the growth, chemical composition, and water relations of pistachio (Pistacia vera L.) seedlings under NaCl stress. Commun Soil Sci Plant Anal 47(8):955–972

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. Nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Evol 36(1):86–93

    CAS  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514

    Article  CAS  PubMed  Google Scholar 

  • Bertrand A, Gatzke C, Bipfubusa M, Lévesque V, Chalifour FP, Claessens A et al (2020) Physiological and biochemical responses to salt stress of alfalfa populations selected for salinity tolerance and grown in symbiosis with salt-tolerant rhizobium. Agron J 10(4):569

    CAS  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:1–16

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Lee YH (2017) A cocktail of volatile compounds emitted from Alcaligenes faecalis JBCS1294 induces salt tolerance in Arabidopsis thaliana by modulating hormonal pathways and ion transporters. J Plant Physiol 214:64–73

    Article  CAS  PubMed  Google Scholar 

  • Botella MA, Martinez V, Pardines J, Cerda A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150(1–2):200–205

    Article  CAS  Google Scholar 

  • Cavalcante VA, Dobereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108(1):23–31

    Article  Google Scholar 

  • Cemek B, Güler M, Kiliç K, Demir Y, Arslan H (2007) Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey. Environ Monit Assess 124(1):223–234

    Article  PubMed  Google Scholar 

  • Chaudhary DR, Rathore AP, Sharma S (2020) Effect of halotolerant plant growth promoting rhizobacteria inoculation on soil microbial community structure and nutrients. Appl Soil Ecol 150:103461

    Article  Google Scholar 

  • Chen Y, Banin A (1975) Scanning electron microscope (SEM) observations of soil structure changes induced by sodium calcium exchange in relation to hydraulic conductivity. Soil Sci Soc Am J 120:428–436

    Article  CAS  Google Scholar 

  • Chu TN, Tran BTH, Hoang MTT (2019) Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res Notes 12(1):1–7

    Article  Google Scholar 

  • Coleman-Derr D, Tringe SG (2014) Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol 5:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshwal VK, Kumar P (2013) Effect of salinity on growth and PGPR activity of pseudomonads. J Acad Ind Res 2(6):353–356

    Google Scholar 

  • Di Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M et al (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3(3):413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Din BU, Sarfraz S, **a Y, Kamran MA, Javed MT, Sultan T et al (2019) Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol Environ Saf 183:109466

    Article  CAS  Google Scholar 

  • Döbereiner J (1992) Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Ciênc Cult 44(5):310–313

    Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L.(goat’s rue) by co-inoculation of rhizobium with root-colonizing Pseudomonas. Plant Soil 369(1):453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth SJ, Alam P, Alyemeni MN, Ahmad P (2018) Interactive effects of nutrients and Bradyrhizobium japonicum on the growth and root architecture of soybean (Glycine max L.). Front Microbiol 9:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting Rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Akhdar I, Elsakhawy T, Abo-Koura HA (2020) Alleviation of salt stress on wheat (Triticum aestivum L.) by plant growth promoting Bacteria strains Bacillus halotolerans MSR-H4 and Lelliottia amnigena MSR-M49. J Adv Microbiol:44–58

    Google Scholar 

  • El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA (2018a) Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem 132:375–384

    Google Scholar 

  • El-Esawi MA, Alaraidh IA, Alsahli AA, Alzahrani SM, Ali HM, Alayafi AA, Ahmad M (2018b) Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. Int J Mol Sci 19(11):3310

    Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot 159:55–65

    Google Scholar 

  • El-Ghany A, Mona F, Attia M (2020) Effect of exopolysaccharide-producing bacteria and melatonin on faba bean production in saline and non-saline soil. Agron 10(3):316

    Article  CAS  Google Scholar 

  • El-Nahrawy S, Yassin M (2020) Response of different cultivars of wheat plants (Triticum aestivum L.) to inoculation by Azotobacter sp. under salinity stress conditions. J Adv Microbiol 20:59–79

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA (2019) Halotolerant plant growth-promoting Fungi and Bacteria as an alternative strategy for improving nutrient availability to salinity-stressed crop plants. In: Kumar M, Etesami H, Kumar V (eds) Saline soil-based agriculture by halotolerant microorganisms. Springer, Singapore, pp 103–146

    Chapter  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Glick BR (2020) Halotolerant plant growth–promoting bacteria: prospects for alleviating salinity stress in plants. Environ Exp Bot 178:104124

    Article  CAS  Google Scholar 

  • Ezeaku PI, Ene J, Shehu JA (2015) Application of different reclamation methods on salt affected soils for crop production. J Exp Agric Int:1–11

    Google Scholar 

  • Fageria NK, Baligar VC, Li YC (2008) The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr 31(6):1121–1157

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S et al (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404

    Article  CAS  Google Scholar 

  • Fallah F, Nokhasi F, Ghaheri M, Kahrizi D, Beheshti Ale AA, Ghorbani T et al (2017) Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol 63(7):102–106

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) Global network on integrated soil management for sustainable use of salt affected soils. Natural Resources and Environment, FAO, Rome. www.fao.org/ag/AGL/agII/spush/intro.htm

    Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Google Scholar 

  • Fatima T, Arora NK (2021) Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiol Res 244: 126671

    Google Scholar 

  • Fatima T, Mishra I, Verma R, Arora NK (2020) Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. 3 Biotech 10:361

    Article  PubMed  PubMed Central  Google Scholar 

  • Fazal A, Bano A (2016) Role of plant growth-promoting rhizobacteria (pgpr), biochar, and chemical fertilizer under salinity stress. Commun Soil Sci Plant Anal 47(17):1985–1993

    Article  CAS  Google Scholar 

  • Fernandes F, Arrabaca M, Carvalho L (2004) Sucrose metabolism in Lupinus albus L. under salt stress. Biol Plantarum 48:317

    Article  CAS  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29(4):409–420

    Article  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018a) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8(1):1–12

    Google Scholar 

  • Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2018b) Co-inoculation of maize with Azospirillum brasilense and rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45(3):328–339

    Article  CAS  PubMed  Google Scholar 

  • Ghorai S, Pal KK, Dey R (2015) Alleviation of salinity stress in groundnut by application of PGPR. Int J Res Eng Technol 2:742–750

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Global Agricultural Productivity Report (2019) Productivity growth for sustainable diets and more. https://globalagriculturalproductivity.org/2019-gap-report/

  • Goharrizi KJ, Riahi-Madvar A, Rezaee F, Pakzad R, Bonyad FJ, Ahsaei MG (2019) Effect of salinity stress on enzymes’ activity, ions concentration, oxidative stress parameters, biochemical traits, content of Sulforaphane, and CYP79F1 gene expression level in Lepidium draba plant. J Plant Growth Regul:1–20

    Google Scholar 

  • Gong DH, Wang GZ, Si WT, Zhou Y, Liu Z, Jia J (2018) Effects of salt stress on photosynthetic pigments and activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase in Kalidium foliatum. Russ J Plant Physiol 65(1):98–103

    Article  CAS  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Grieve CM, Grattan SR, Maas EV (2012) Plant salt tolerance. In: ASCE Manual and Reports on Engineering Practice. ASCE, Reston, pp 405–459

    Google Scholar 

  • Grobelak A, Kokot P, Hutchison D, Grosser A, Kacprzak M (2018) Plant growth-promoting rhizobacteria as an alternative to mineral fertilizers in assisted bioremediation-sustainable land and waste management. J Environ Manag 227:1–9

    Article  CAS  Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Res. Int 2016:6284547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanay A, Büyüksönmez F, Kiziloglu FM, Canbolat MY (2004) Reclamation of saline-sodic soils with gypsum and MSW compost. Compost sci util 12(2):175–179

    Article  Google Scholar 

  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K (2012) Abiotic stress and role of salicylic acid in plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism productivity and sustainability. Springer Verlag, New York, pp 235–251

    Chapter  Google Scholar 

  • Hasbullah H, Marschner P (2014) Residue properties influence the impact of salinity on soil respiration. Biol Fertil Soils 51:99–111

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549

    Article  CAS  Google Scholar 

  • Hussain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55

    Google Scholar 

  • Imron MF, Kurniawan SB, Abdullah SR (2021) Resistance of bacteria isolated from leachate to heavy metals and the removal of hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sust Environ Res 31(1):1–3

    CAS  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Jafarzadeh AA, Aliasgharzad N (2007) Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia 62(5):562–564

    Article  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing Bacteria. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162

    Chapter  Google Scholar 

  • Ji J, Yuan D, ** C, Wang G, Li X, Guan C (2020) Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiol Plant 42(4):1–17

    Article  CAS  Google Scholar 

  • Jiang H, Qi P, Wang T, Chi X, Wang M, Chen M, Pan L (2019) Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut (Arachis hypogaea L.) under saline soil. Ann Appl Biol 174(1):20–30

    Article  Google Scholar 

  • Jiménez-Gómez A, García-Estévez I, García-Fraile P, Escribano-Bailón MT, Rivas R (2020) Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer. J Sci Food Agric 100:2742–2749

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Shahzad R, Bilal S, Khan AL, Park YG, Lee KE et al (2019) Indole-3-acetic-acid and ACC deaminase producing Leclerciaade carboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol 19(1):1–14

    Article  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Khan MA, Abdullah Z (2003) Salinity–sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environ Exp Bot 49(2):145–157

    Article  CAS  Google Scholar 

  • Khan MA, Weber DJ (2008) Ecophysiology of high salinity tolerant plants: tasks for vegetation science, 1st edn. Springer, Dordrecht

    Google Scholar 

  • Khan MM, Al-Mas’oudi RS, Al-Said F, Khan I (2013a) Salinity effects on growth, electrolyte leakage, chlorophyll content and lipid peroxidation in cucumber (Cucumis sativus L.). In: International conference on food and agricultural sciences. IACSIT Press, Malaysia, pp 28–32

    Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013b) Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari D, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity springer. Heidelberg, Berlin, pp 237–263

    Chapter  Google Scholar 

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim S, Shim IS (2017) Exogenous salicylic acid alleviates salt-stress damage in cucumber under moderate nitrogen conditions by controlling endogenous salicylic acid levels. Hortic Environ Biotechnol 58(3):247–253

    Article  CAS  Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–890

    CAS  Google Scholar 

  • Kumar M, Sharma S, Gupta S, Kumar V (2018) Mitigation of abiotic stresses in Lycopersicon esculentum by endophytic bacteria. Environ Sust 1(1):71–80

    CAS  Google Scholar 

  • Kumawat KC, Sharma P, Nagpal S, Gupta RK, Sirari A, Nair RM, Singh S (2020) Dual microbial inoculation, a game changer?—bacterial biostimulants with multifunctional growth promoting traits to mitigate salinity stress in spring Mungbean. Front Microbiol 11:600576

    Article  PubMed  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova DY et al (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    Article  CAS  PubMed  Google Scholar 

  • Latef AAHA, Alhmad MFA, Kordrostami M, Abo-Baker ABAE, Zakir A (2020) Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul 39(3):1293–1306

    Article  CAS  Google Scholar 

  • Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Donoso R (2016) Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front Microbiol 7:18–38

    Article  Google Scholar 

  • Li H, Lei P, Pang X, Li S, Xu H, Xu Z, Feng X (2017) Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol 119:26–34

    Article  CAS  Google Scholar 

  • Li X, Sun P, Zhang Y, ** C, Guan C (2020) A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ Exp Botany 174:104023

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahdi I, Hafidi M, Allaoui A, Biskri L (2021) Halotolerant endophytic bacterium Serratia rubidaea ED1 enhances phosphate solubilization and promotes seed germination. Agriculture 11(3):224

    Article  CAS  Google Scholar 

  • Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK et al (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Maougal RT, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon JJ (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato and pepper to salt stress. Plant Physiol Biochem 167:650–656

    Google Scholar 

  • Mishra J, Fatima T, Arora NK (2018) Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. In: Plant microbiome: stress response. Springer, Berlin, pp 127–163

    Chapter  Google Scholar 

  • Misra S, Chauhan PS (2020) ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 10(3):1–14

    Article  Google Scholar 

  • Moradi S, Rasouli-Sadaghiani M, Sepehr E, Khodaverdiloo H, Barin M (2019) The role of organic carbon in the mineralization of nitrogen, carbon and some of nutrient concentrations in soil salinity conditions. J Soil Manage Sustain Product 9(3):153–169

    Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Biochemical mechanisms of salt tolerance in plants: a review. Int J Botany 6:136–143

    Article  CAS  Google Scholar 

  • Mukhtar S, Zareen M, Khaliq Z, Mehnaz S, Malik KA (2020) Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. J Appl Microbiol 128(2):556–573

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Naveen B, Sumalatha J, Malik R (2018) A study on contamination of ground and surface water bodies by leachate leakage from a landfill in Bangalore, India. International Journal of Geo-Engineering 9:1–20

    Article  Google Scholar 

  • Nawaz A, Shahbaz M, Asadullah AI, Marghoob MU, Imtiaz M, Mubeen F (2020) Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions. Front Microbiol 11:2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8(21)

    Google Scholar 

  • Nozari RM, Ortolan F, Astarita LV, Santarém ER (2021) Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Braz J Microbiol 52:1–13

    Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL et al (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Osman KT (2018) Saline and sodic soils. In: Management of soil problems. Springer, Berlin, pp 255–298

    Chapter  Google Scholar 

  • Oster J (1982) Gypsum usage in irrigated agriculture: a review. Fertilizer research 3:73–89

    Article  CAS  Google Scholar 

  • Oster JD, Shainberg I (2001) Soil responses to sodicity and salinity: challenges and opportunities. Soil Res 39(6):1219–1224

    Article  CAS  Google Scholar 

  • Otaiku AA, Mmom PC, Ano AO (2019) Biofertilizer impacts on cassava (Manihot Esculenta Crantz) cultivation: improved soil health and quality. Igbariam, Nigeria

    Google Scholar 

  • Palacio-Rodríguez R, Coria-Arellano JL, López-Bucio J, Sánchez-Salas J, Muro-Pérez G, Castañeda-Gaytán G, Sáenz-Mata J (2017) Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts. Symbiosis 73(3):179–189

    Article  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Pearson KE, Bauder JW (2006) The basics of salinity and sodicity effects on soil physical properties. MSU Ext Water Qual:1–11

    Google Scholar 

  • Phour M, Sindhu SS (2020) Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L.) by salt-tolerant Pseudomonas species. Appl Soil Ecol 149:103518

    Article  Google Scholar 

  • Pirhadi M, Enayatizamir N, Motamedi H, Sorkheh K (2016) Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. Biosci Biotechnol Res Commun 9(3):530–538

    Article  Google Scholar 

  • Prakash J, Arora NK (2021) Novel metabolites from Bacillus safensis and their antifungal property against Alternaria alternata. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-021-01598-4

  • Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KH, Rao MV et al (2016) Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. J Agron Crop Sci 202(2):125–138

    Article  CAS  Google Scholar 

  • Ranawat B, Mishra S, Singh A (2021) Enterobacter hormaechei (MF957335) enhanced yield, disease and salinity tolerance in tomato. Arch Microbiol 203(5):2659–2667

    Google Scholar 

  • Rath KM, Murphy DN, Rousk J (2019) The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biol Biochem 138:107607

    Article  CAS  Google Scholar 

  • Raval VH, Saraf M (2020) Biosynthesis and purification of indole-3-acetic acid by halotolerant rhizobacteria isolated from little Runn of Kachchh. Biocatal Agric Biotechnol 23:101435

    Article  Google Scholar 

  • Rojas-Solis D, Vences-Guzmán MÁ, Sohlenkamp C, Santoyo G (2020) Antifungal and plant growth–promoting bacillus under saline stress modify their membrane composition. J Soil Sci Plant Nutr 20(3):1549–1559

    Article  CAS  Google Scholar 

  • Sagar A, Sayyed RZ, Ramteke PW, Sharma S, Marraiki N, Elgorban AM et al (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26(9):1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghafi D, Ghorbanpour M, Lajayer BA (2018) Efficiency of rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18(1):253–268

    CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Santos AA, Silveira JAG, Bonifacio A, Rodrigues AC, Figueiredo MVB (2018) Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Braz J Microbiol 49:513–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S et al (2018a) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Pramanik K, Mitra S, Soren T, Maiti TK (2018b) Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol 231:434–442

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, Sarwar G et al (2019) Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiol Mol Biol Plants:1–14

    Google Scholar 

  • Shavalikohshori O, Zalaghi R, Sorkheh K, Enaytizamir N (2020) The expression of proline production/degradation genes under salinity and cadmium stresses in Triticum aestivum inoculated with Pseudomonas sp. Int J Environ Sci Technol 17(4):2233–2242

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 11:e0155026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. AfrJ Agric Res 9(16):1265–1277

    Google Scholar 

  • Srivastava S, Srivastava S (2020) Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Sci Rep 10(1):1–15

    Article  CAS  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30

    Article  Google Scholar 

  • Sultana S, Paul SC, Parveen S, Alam S, Rahman N, Jannat B, Karim MM (2020) Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can J Microbiol 66(2):144–160

    Article  CAS  PubMed  Google Scholar 

  • Sultana S, Alam S, Karim MM (2021) Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J Food Agric Environ 4:100150

    Google Scholar 

  • Szymańska S, Dąbrowska GB, Tyburski J, Niedojadło K, Piernik A, Hrynkiewicz K (2019) Boosting the Brassica napus L. tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12. Environ Exp Bot 163:55–68

    Article  CAS  Google Scholar 

  • Taj Z, Challabathula D (2020) Protection of photosynthesis by halotolerant Staphylococcus sciuri ET101 in tomato (Lycopersicon esculentum) and rice (Oryza sativa L.) plants during salinity stress: possible interplay between carboxylation and oxygenation in stress mitigation. Front Microbiol 11:547750

    Article  PubMed  Google Scholar 

  • Tewari S, Arora NK (2014) Talc based exopolysaccharides formulation enhancing growth and production of Helianthus annuus under saline conditions. Cell Mol Biol 60(5):73–81

    CAS  PubMed  Google Scholar 

  • Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68(1–3):99–108

    Google Scholar 

  • Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23 EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sustain 1(1):49–59

    Article  Google Scholar 

  • Tirry N, Kouchou A, Laghmari G, Lemjereb M, Hnadi H, Amrani K et al (2021) Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatal Agric Biotechnol 31:101914

    Article  CAS  Google Scholar 

  • Tunçtürk M, Tunçtürk R, Yildirim B, Çiftçi V (2011) Changes of micronutrients, dry weight and plant development in canola (Brassica napus L.) cultivars under salt stress. Afr J Biotechnol 10(19):3726–3730

    Google Scholar 

  • Ul Hassan T, Bano A (2019) Construction of IAA-deficient mutants of Pseudomonas moraviensis and their comparative effects with wild type strains as bio-inoculant on wheat in saline sodic soil. Geomicrobiol J 36(4):376–384

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–611

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Saxena AK, Singh JS, Singh DP (2019) Impact of native ST-PGPR (bacillus pumilus; EU927414) on PGP traits, antioxidants activities, wheat plant growth and yield under salinity. Clim Change Environ Sustain 7(2):157–168

    Article  Google Scholar 

  • Vaishnav A, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated amelioration of crops under salt stress. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 205–226

    Chapter  Google Scholar 

  • Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK (2020) Sphingobacterium sp. BHU-AV3 induces salt tolerance in tomato by enhancing antioxidant activities and energy metabolism. Front Microbiol 11:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanissa TTG, Berger B, Patz S, Becker M, Turečková V, Novák O et al (2020) The response of maize to inoculation with Arthrobacter sp. and Bacillus sp. in phosphorus-deficient, salinity-affected soil. Microorganisms 8(7):1005

    Article  CAS  PubMed Central  Google Scholar 

  • Verma M, Singh A, Dwivedi DH, Arora NK (2020) Zinc and phosphate solubilizing rhizobium radiobacter (LB2) for enhancing quality and yield of looseleaf lettuce in saline soil. Environ Sustain 3:209–218

    Article  CAS  Google Scholar 

  • Walpola BC, Arunakumara KK (2011) Carbon and nitrogen mineralization of a plant residue amended soil: the effect of salinity stress. Bangladesh J Sci Ind Res 46(4):565–572

    Article  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27(2):327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, He Y, Huang Y, Li X, Ye BC (2018) Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in **njiang. Ecotoxicol Environ Saf 164:520–529

    Article  CAS  PubMed  Google Scholar 

  • Warrence NJ, Bauder JW, Pearson KE (2002) Basics of salinity and sodicity effects on soil physical properties. Department of Land Resources and Environmental Sciences, Montana State University-Bozeman, MT 129

    Google Scholar 

  • Wu T, Xu J, Liu J, Guo WH, Li XB, **a JB et al (2019) Characterization and initial application of endophytic Bacillus safensis strain ZY16 for improving phytoremediation of oil-contaminated saline soils. Front Microbiol 10:991

    Article  PubMed  PubMed Central  Google Scholar 

  • **ong YW, Li XW, Wag TT, Gong Y, Zhang CM, **ng K, Qin S (2020) Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol Environ Saf 194:110374

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Akhtar SS, Fu Q, Naveed M, Iqbal S, Roitsch T et al. (2020) Burkholderia phytofirmans PsJN stimulate growth and yield of quinoa under salinity stress. Plan Theory 9(6):672

    Google Scholar 

  • Yasmin H, Naeem S, Bakhtawar M, Jabeen Z, Nosheen A, Naz R, Hassan MN (2020) Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS One 15(4):e0231348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoolong S, Kruasuwan W, Phạm HTT, Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2019) Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133(1):87–94

    Article  Google Scholar 

  • Yousefi S, Kartoolinejad D, Bahmani M, Naghdi R (2017) Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress. J Sustain Forestry 36(2):107–120

    Article  Google Scholar 

  • Zai XM, Fan JJ, Hao ZP, Liu XM, Zhang WX (2021) Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment. Sci Rep 11(1):1–11

    Article  CAS  Google Scholar 

  • Zhang Z, Li H, Qiao S, Zhang X, Liu P, Liu X (2011) Effect of salinity on seed germination, seedling growth, and physiological characteristics of Perilla frutescens. Plant Biosyst 146:1–7

    Google Scholar 

  • Zhang L, Zhang G, Wang Y, Zhou Z, Meng Y, Chen B (2013) Effect of soil salinity on physiological characteristics of functional leaves of cotton plants. J Plant Res 126:293–304

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang H, Wang J, Tian D, Li Y, He N et al (2019) Soil and climate determine differential responses of soil respiration to nitrogen and acid deposition along a forest transect. Eur J Soil Biol 93:103097

    Article  CAS  Google Scholar 

  • Zhang G, Bai J, Tebbe CC, Zhao Q, Jia J, Wang W (2021) Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ Microbiol 23(2):1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, P., Bhattacharya, A., Verma, P., Bharti, C., Arora, N.K. (2022). Plant Growth-Promoting Bacteria as Biostimulants of Crops in Saline Agroecosystems. In: Arora, N.K., Bouizgarne, B. (eds) Microbial BioTechnology for Sustainable Agriculture Volume 1. Microorganisms for Sustainability, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-16-4843-4_6

Download citation

Publish with us

Policies and ethics

Navigation