Log in

Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Five environmentally stable QTLs for spikelet number per spike and days to heading were identified using a high-genetic map containing 95,444 SNPs, among which QSns.ucas-5B was validated using residual heterozygous line at multiple environments.

Abstract

Spikelet number per spike (SNS) and days to heading (DTH) play pivotal roles in the improvement of wheat yield. In this study, a high-density genetic map for a recombinant inbred lines (RILs) population derived from Zhengnong 17 (ZN17) and Yangbaimai (YBM) was constructed using 95,444 single-nucleotide polymorphism (SNP) markers from the Wheat660K SNP array. Our study identified a total of five environmentally stable QTLs for SNS and DTH, one of which was named QSns.ucas-5B, with a physical interval of approximately 545.4–552.1 Mb on the 5BL chromosome arm. Importantly, the elite haplotype within QSns.ucas-5B showed a consistent and positive effect on SNS, grain number and weight per spike, without extending the days to heading. These findings provide a foundation for future efforts to map and clone the gene(s) responsible for QSns.ucas-5B and further indicate the potential application of the developed and validated InDel marker of QSns.ucas-5B for molecular breeding purposes, aimed at improving wheat grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in the main text article and its supplementary files. The raw sequencing data of ZN17 and YBM have been deposited in National Genomics Data Center (NGDC, https://ngdc.cncb.ac.cn/) under accession numbers CRR290233 and CRR290167, respectively.

References

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  PubMed  CAS  Google Scholar 

  • Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Jean Finnegan E, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plants 1:14016

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, **ng J, **n M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z (2022) A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol J 20:920–933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen ZY, Cheng XJ, Chai LL, Wang ZH, Du DJ, Wang ZH, Bian RL, Zhao AJ, **n MM, Guo WL, Hu ZR, Peng HR, Yao YY, Sun QX, Ni ZF (2020) Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet 133:1825–1838

    Article  PubMed  CAS  Google Scholar 

  • Chhetri M, Bariana H, Wong D, Sohail Y, Hayden M, Bansal U (2017) Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol Breed 37:21

    Article  Google Scholar 

  • Corsi B, Obinu L, Zanella CM, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hartl L, Cockram J (2021) Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theor Appl Genet 134:1435–1454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, Qi X, Li X, Li G, Gao J, Wang H (2012) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186:177–192

    Article  Google Scholar 

  • Cui F, Zhang N, Fan X-l, Zhang W, Zhao C-h, Yang L-j, Pan R-q, Chen M, Han J, Zhao X-q, Ji J, Tong Y-p, Zhang H-x, Jia J-z, Zhao G-y, Li J-m (2017) Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution map** of a major QTL for kernel number. Sci Rep 7:3788

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon LE, Greenwood JR, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain SM, Boden SA (2018) TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30:563–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanabe N, Prat E, Gautier N, Gautier V, Poncet C, Orlov YL, Krasnikov AA, Bergès H, Salina E, Laikova L, Salse J (2015) FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol 167:189–199

    Article  PubMed  CAS  Google Scholar 

  • Echeverry-Solarte M, Kumar A, Kianian S, Simsek S, Alamri MS, Mantovani EE, McClean PE, Deckard EL, Elias E, Schatz B (2015) New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary×non-supernumerary spikelet genotypes. Theor Appl Genet 128:893–912

    Article  PubMed  CAS  Google Scholar 

  • He GH, Zhang YW, Liu P, **g YX, Zhang LC, Zhu YF, Kong XY, Zhao HX, Zhou Y, Sun JQ (2021) The transcription factor TaLAX1 interacts with Q to antagonistically regulate grain threshability and spike morphogenesis in bread wheat. New Phytol 230:988–1002

    Article  PubMed  CAS  Google Scholar 

  • Holland J, Nyquist W, Cervantes-Martinez C (2003) Estimating and interpreting heritability for plant breeding. Plant Breed Rev 22:9–111

    Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, **a G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  PubMed  CAS  Google Scholar 

  • Isham K, Wang R, Zhao W, Wheeler J, Klassen N, Akhunov E, Chen J (2021) QTL map** for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. Theor Appl Genet 134:2079–2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitomi Y, Ogawa A, Kitano H, Inukai Y (2008) CRL4 regulates crown root formation through auxin transport in rice. Plant Root 2:19–28

    Article  CAS  Google Scholar 

  • Kuzay S, Lin H, Li C, Chen S, Woods DP, Zhang J, Lan T, von Korff M, Dubcovsky J (2022) WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genet 18:e1009747–e1009747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis JM, Mackintosh CA, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer GJ (2008) Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep 27:1217–1225

    Article  PubMed  CAS  Google Scholar 

  • Li T, Deng G, Tang Y, Su Y, Wang J, Cheng J, Yang Z, Qiu X, Pu X, Zhang H, Liang J, Yu M, Wei Y, Long H (2021a) Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci 12:611106

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B, Xu H, Cui S, Zhang A, Fu X, Li J, **g R, Liu X (2021b) Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J 19:1141–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZF (2006) Identification of slow stripe rust resistance in Chinese wheat and molecular map** of new stripe rust resistance gene YrZH84. Ph.D. Thesis. Chinese academy of agricultural sciences

  • Liu H, Wang K, Tang H, Gong Q, Du L, Pei X, Ye X (2020) CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. J Genet Genom 47:563–575

    Article  CAS  Google Scholar 

  • Liu J, Luo W, Qin N, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Li W, Jiang Q, Chen G, Wei Y, Zheng Y, Liu C, Lan X, Ma J (2018) A 55 K SNP array-based genetic map and its utilization in QTL map** for productive tiller number in common wheat. Theor Appl Genet 131:2439–2450

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y (2019) Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet 132:3155–3167

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, **a G, Fu D, Kang Z, Ni F (2021) WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant 14:1965–1968

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genom 277:31–42

    Article  CAS  Google Scholar 

  • Mcintosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, **: Integrated software for genetic linkage map construction and quantitative trait locus map** in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Muqaddasi QH, Brassac J, Koppolu R, Plieske J, Ganal MW, Röder MS (2019) TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci Rep 9:13853

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada T, Jayasinghe JEARM, Eckermann P, Watson-Haigh NS, Warner P, Hendrikse Y, Baes M, Tucker EJ, Laga H, Kato K, Albertsen M, Wolters P, Fleury D, Baumann U, Whitford R (2019) Effects of Rht-B1 and Ppd-D1 loci on pollinator traits in wheat. Theor Appl Genet 132:1965–1979

    Article  PubMed  CAS  Google Scholar 

  • Peng L-T, Shi Z-Y, Li L, Shen G-Z, Zhang J-L (2007) Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochem Bioph Res Co 360:251–256

    Article  CAS  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Ronin YI, Mester DI, Minkov DG, Akhunov E, Korol AB (2017) Building ultra-high-density linkage maps based on efficient filtering of trustable markers. Genetics 206:1285–1295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw LM, Bo L, Turner R, Li C, Dubcovsky J (2018) FLOWERING LOCUS T2 (FT2) regulates spike development and fertility in temperate cereals. J Exp Bot 70:193–204

    Article  PubMed Central  Google Scholar 

  • Si Y, Zheng S, Niu J, Tian S, Shi X, He Y, Li Y, Ling H-Q (2021) Fine map** of hybrid necrosis gene Ne1 in common wheat (Triticum aestivum L.). Theor Appl Genet 134:2603–2611

    Article  PubMed  CAS  Google Scholar 

  • Si Y, Lu Q, Tian S, Niu J, Cui M, Liu X, Gao Q, Shi X, Ling H-Q, Zheng S (2022) Fine map** of the tiller inhibition gene TIN5 in Triticum urartu. Theor Appl Genet 135:2665–2673

    Article  PubMed  CAS  Google Scholar 

  • Simmonds J, Scott P, Brinton J, Mestre TC, Bush M, del Blanco A, Dubcovsky J, Uauy C (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet 129:1099–1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang ZC, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song G, Sun G, Kong X, Jia M, Wan K, Ye X, Zhou Y, Geng S, Mao L, Li A (2019) The soft glumes of common wheat are sterile-lemmas as dete fined by the domestication gene Q. Crop J 7:113–117

    Article  Google Scholar 

  • Song S, Wang G, Hu Y, Liu H, Bai X, Qin R, **ng Y (2018) OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. J Exp Bot 69:4283–4293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trends Plant Sci 17:91–101

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F (2020) The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18:1354–1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun C, Zhang F, Yan X, Zhang X, Dong Z, Cui D, Chen F (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15:953–969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YG, Du F, Wang J, Wang K, Tian CH, Qi XQ, Lu F, Liu XG, Ye XG, Jiao YL (2022) Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat Plants 8:930–939

    Article  PubMed  CAS  Google Scholar 

  • Wurschum T, Leiser WL, Langer SM, Tucker MR, Longin CFH (2018) Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor Appl Genet 131:2071–2084

    Article  PubMed  Google Scholar 

  • Xu H, Zhang R, Wang M, Li L, Yan L, Wang Z, Zhu J, Chen X, Zhao A, Su Z, **ng J, Sun Q, Ni Z (2022) Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. Theor Appl Genet 135:389–403

    Article  PubMed  CAS  Google Scholar 

  • Yao H, **e Q, Xue S, Luo J, Lu J, Kong Z, Wang Y, Zhai W, Lu N, Wei R, Yang Y, Han Y, Zhang Y, Jia H, Ma Z (2019) HL2 on chromosome 7D of wheat (Triticum aestivum L.) regulates both head length and spikelet number. Theor Appl Genet 132:1789–1797

    Article  PubMed  CAS  Google Scholar 

  • Yin G, Wang J, Wen W, He Z, Li Z, Wang H, ** of wheat stripe rust resistance gene YrZH84 with RGAP markers and its application. Acta Agron Sin 35:1274–1281

    Article  CAS  Google Scholar 

  • Zhai H, Feng Z, Du X, Song Y, Liu X, Qi Z, Song L, Li J, Li L, Peng H, Hu Z, Yao Y, **n M, **ao S, Sun Q, Ni Z (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor Appl Genet 131:539–553

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Liu X, Xu W, Chang J, Li A, Mao X, Zhang X, **g R (2015) Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci Rep 5:12211

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Jia HY, Li T, Wu JZ, Nagarajan R, Lei L, Powers C, Kan CC, Hua W, Liu ZY, Chen C, Carver BF, Yan LL (2022) TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 376:180–183

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, **ao J, Liu Y, Chen S, Yuan C, Cao A, You FM, Yang D, An S, Wang H, Wang X (2018) Rht23 (5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor Appl Genet 131:1825–1834

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Conway B, Miller D, Marshall D, Cooper A, Murphy P, Chao S, Brown-Guedira G, Costa J (2017) Quantitative trait loci map** for spike characteristics in hexaploid wheat. Plant Genome 10:2

    Article  Google Scholar 

  • Zhu TT, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnere G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo MC (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J 107:303–314

    CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA24010104-1) and China Postdoctoral Science Foundation (2022M710163).

Author information

Authors and Affiliations

Authors

Contributions

H-Q L and SZ conceived the project and revised the manuscript; SZ developed the map** population; YS, ST, JN, ZY, SM, QL and HW carried out the experiments; YS analyzed data and wrote the manuscript; all authors assisted in revising the manuscript.

Corresponding authors

Correspondence to Hong-Qing Ling or Shusong Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Based on the physical locations of these mapped markers on the IWGSC RefSeq v2.1 genome, the marker order was relatively consistent with that in the wheat genome assembly on most of the chromosomes, except for part of chromosome 1A and 6B. The ordinate and abscissa represent the physical position and the genetic position of markers, respectively. (PPT 172KB)

Fig. S2

Frequency distribution and Shapiro-Wilk test indicated that spikelet number per spike exhibited normal distribution with the BLUP value of nine environments (P > 0.05). (PPT 45KB)

Fig. S3

The stable QTL on 1B may be located on the 1BS/1RS translocation chromosome. (a) and (b) represent the results of map** spikelet number per spike using partial 1BL and 1B full-length genetic map, respectively. Colored lines represent environments (E1–9). (PPT 123KB)

Fig. S4

Days to heading of QSns.ucas-5B in different environments. Significant differences were detected between lines RHL-55YBM and RHL-55ZN17 derived from a residual heterogeneous line at the QSns.ucas-5B region. Statistical analysis was carried out using Student's t-test and significance was denoted by ** for P < 0.01. (PPT 42KB)

Fig. S5

The expression pattern of two candidate genes in different tissues.

The relevant data and analysis was download from the WheatOmics database (http://wheatomics.sdau.edu.cn/) constructed by Ma et al. (2021). (PPT 483KB)

Fig. S6

The sequence alignment of candidate gene TraesCS5B03G0915200 between the two parents. Highlight homology level: black, 100%; pink, ≥ 75%; blue, ≥ 50%. (PPT 137KB)

Table S1

Detailed information of the nine planting environments. Table S2 The detail information of the high-density map constructed in the study. Table S3 The deleted SNPs located on 7B chromosome due to distorted segregation. Table S4 Correlation coefficients analysis among the mean values of spikelet number per spike and days to heading. Table S5 The reconstructed full-length 1B chromosome genetic map. Table S6 Effects of putative QTLs for spikelet number per spike in individual environments. Table S7 Putative function genes in the intervals of stable QTL. Table S8 Variant comparison in the interval of QSns.ucas-5B. Table S9 Analysis of amino acid polymorphism of parents within QSns.ucas-5B interval. Table S10 Comparative analysis of QSns.ucas-5B locus with previously study. (XLSX 3,387KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Y., Tian, S., Niu, J. et al. Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat. Theor Appl Genet 136, 240 (2023). https://doi.org/10.1007/s00122-023-04488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04488-7

Navigation