Log in

Rossby Waves on Non-zonal Currents: Structural Stability of Critical Layer Effects

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The problem of the propagation of linear Rossby waves in horizontally inhomogeneous non-zonal flows is studied. The explicit solution within the geometric optics (WKBJ) approximation is found to be identical to the exact Cauchy problem solution for the case of a constant horizontal velocity shear.The effect of the short-wave transformation of Rossby waves near the so-called critical layer is detailed for the arbitrary direction of non-zonal flow. In the general case, this transformation can occur in two ways: (1) as an adhering, a monotonic approaching of wave packets to the critical layer for an infinitely long time. The sign of the intrinsic frequency of the packet remains the same all the time; (2) as an adhering with overshooting when the wave packet, first, crosses its critical layer at finite wavenumber. The wave changes the sign of the intrinsic frequency when overshooting the critical layer and then keeps the sign when it is adhering to this layer asymptotically similarly to the previous scenario. The latter regime does not exist for zonal flows, that degenerates the short-wave dynamics of Rossby waves in this special case. On the contrary, the anisotropy of the dispersion relation permits both positive and negative frequencies in a non-zonal flow. It allows for the effective use of the concept of waves of negative energy for the analysis of the stability of large-scale currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Annenkov, S. Y., & Shrira, V. I. (1992). On zonal waveguides for Rossby waves in the World Ocean. Okeanologiya, 32(1), 5–12.

    Google Scholar 

  • Badulin, S. I., & Shrira, V. I. (1985). The trap** of internal waves by horizontally inhomogeneous currents of arbitrary geometry. Izvestiya, Atmospheric and Oceanic Physics, 21(9), 982–992.

    Google Scholar 

  • Badulin, S. I., & Shrira, V. I. (1993). On the irreversibility of internal wave dynamics owing to trap** by large-scale flow nonuniformity. Journal of Fluid Mechanics, 251, 21–53.

    Article  Google Scholar 

  • Badulin, S. I., Shrira, V. I., & Tsimring, L. S. (1985). The trap** and vertical focusing of internal waves in a pycnocline due to horizontal inhomogeneities of density and currents. Journal of Fluid Mechanics, 158, 199–218.

    Article  Google Scholar 

  • Badulin, S. I., Tsiring, L. S., & Shrira, V. I. (1983). On the trap** and vertical focusing of internal waves in a pycnocline due to horizontal inhomogeneities of stratification and current. Soviet Physics Doklady, 273, 459–463.

    Google Scholar 

  • Badulin, S. I., Vasilenko, V. M., & Golenko, N. N. (1990). Transformation of internal waves in the equatorial Lomonosov current. Izvestiya, Atmospheric and Oceanic Physics, 26(2), 110–117.

    Google Scholar 

  • Basovich, A. Y., & Talanov, V. I. (1977). Transformation of short surface waves on inhomogeneous currents. Izvestiya, Atmospheric and Oceanic Physics, 13, 706–733.

    Google Scholar 

  • Duba, C. T., Doyle, T. B., & McKenzie, J. F. (2014). Rossby wave patterns in zonal and meridional winds. Geophysical & Astrophysical Fluid Dynamics, 108(3), 237–257. https://doi.org/10.1080/03091929.2013.867604.

    Article  Google Scholar 

  • Erokhin, N. S., & Sagdeev, R. Z. (1985a). To the theory of anomalous focusing of internal waves in a two-dimensional non-uniform fluid. Part I: A stationary problem. Morskoy Gidrofizicheskiy Zhurnal (in Russian), 2, 15–27.

    Google Scholar 

  • Erokhin, N. S., & Sagdeev, R. Z. (1985b). To the theory of anomalous focusing of internal waves in a two-dimensional non-uniform fluid. Part II: Precise solution of two-dimensional problem with regard for viscosity and non-stationarity. Morskoy Gidrofizicheskiy Zhurnal (in Russian), 4, 3–10.

    Google Scholar 

  • Fabricant, A. (1987). Superreflection of waves in hydrodynamic flows. Radiophysics and Quantum Electronics, 30(2), 213–224. https://doi.org/10.1007/BF01034493.

    Article  Google Scholar 

  • Gnevyshev, V. G., & Badulin, S. I. (2017). On the asymptotics of multidimensional linear wave packets: Reference solutions. Moscow University Physics Bulletin, 72(4), 415–423.

    Article  Google Scholar 

  • Gnevyshev, V. G., Frolova, A. V., Kubryakov, A. A., Sobko, Y. V., & Belonenko, T. V. (2019). Interaction of Rossby waves with a jet stream: Basic equations and their verification for the Antarctic Circumpolar Current. Izvestiya, Atmospheric and Oceanic Physics, 55(5), 412–422. https://doi.org/10.1134/S0001433819050074.

    Article  Google Scholar 

  • Gnevyshev, V. G., & Shrira, V. I. (1989a). Dynamics of Rossby wave packets in the vicinity of the zonal critical layer taking into account viscosity. Izvestiya Akademii Nauk SSSR, Fizika Atmosfery i Okeana, 25(10), 1064–1074.

    Google Scholar 

  • Gnevyshev, V. G., & Shrira, V. I. (1989b). Kinematics of Rossby waves on non-uniform meridional current. Okeanologiya, 29(4), 543–548.

    Google Scholar 

  • Gnevyshev, V. G., & Shrira, V. I. (1989c). On the evaluation of barotropic-baroclinic instability parameters of the zonal flows in beta-plane. Doklady Akademii Nauk SSSR, 306(2), 305–309.

    Google Scholar 

  • Gnevyshev, V. G., & Shrira, V. I. (1989d). Transformation of monochromatic Rossby waves in the critical layer of the zonal current. Izvestiya Akademii Nauk SSSR, Fizika Atmosfery i Okeana, 25(8), 852–862.

    Google Scholar 

  • Gnevyshev, V. G., & Shrira, V. I. (1990). On the evaluation of barotropic–baroclinic instability parameters of zonal flows on a beta-plane. Journal of Fluid Mechanics, 221, 161–181. https://doi.org/10.1017/S0022112090003524.

    Article  Google Scholar 

  • Kelvin, L. (1906). Deep sea ship waves. Proceedings of the Royal Society of Edinburgh, 25(2), 1060–1084. https://doi.org/10.1017/S0370164600016771.

    Article  Google Scholar 

  • Killworth, P. D., & Blundell, J. R. (2004). The dispersion relation for planetary waves in the presence of mean flow and topography. Part I: Analytical theory and one-dimensional examples. Journal of Physical Oceanography, 34, 2692–2711.

    Article  Google Scholar 

  • Killworth, P. D., & Blundell, J. R. (2005). The dispersion relation for planetary waves in the presence of mean flow and topography. Part II: Two-dimensional examples and global results. Journal of Physical Oceanography, 35, 2110–2133.

    Article  Google Scholar 

  • Killworth, P. D., & Blundell, J. R. (2007). Planetary wave response to surface forcing and instability in the presence of mean flow and topography. Journal of Physical Oceanography, 35, 1297–1320.

    Article  Google Scholar 

  • Killworth, P. D., & McIntyre, M. E. (1985). Do Rossby-wave critical layers absorb, reflect, or over-reflect? Journal of Fluid Mechanics, 161, 449–492. https://doi.org/10.1017/S0022112085003019.

    Article  Google Scholar 

  • LeBlond, P., & Mysak, L. (1978). Waves in the Ocean. Elsevier oceanography series. Amsterdam: Elsevier Scientific Publishing Company. https://books.google.ru/books?id=802guAAACAAJ. Accessed 16 June 2020.

  • Lifshitz, E. M., & Pitaevskii, L. P. (1987). Fluid mechanics, course of theoretical physics (2nd ed., Vol. 6). Amsterdam: Pergamon, Elsevier Ltd. https://doi.org/10.1016/C2013-0-03799-1.

    Book  Google Scholar 

  • Maslov, V. P. (1988). Asymptotic methods and perturbation theory. Moscow: Nauka.

    Google Scholar 

  • Pedlosky, J. (1987). Geophysical fluid dynamics (2nd ed.). New York: Springer. https://doi.org/10.1007/978-1-4612-4650-3.

    Book  Google Scholar 

  • Sabinin, K. D., & Serebryany, A. N. (2007). “Hot Spots” in the field of internal waves in the ocean. Acoustical Physics, 53(3), 357–380.

    Article  Google Scholar 

  • Shrira, V. I., & Townsend, W. A. (2010). Inertia-gravity waves beyond the inertial latitude. Part 1. Inviscid singular focusing. Journal of Fluid Mechanics, 664, 478–509. https://doi.org/10.1017/S0022112010003812.

    Article  Google Scholar 

  • Stepanyants, Y. A., & Fabrikant, A. L. (1989). Propagation of waves in hydrodynamic shear flows. Soviet Physics Uspekhi, 32, 783–805. https://doi.org/10.1070/PU1989v032n09ABEH002757.

    Article  Google Scholar 

  • Voronovich, A. G. (1976). Propagation of internal and surface gravity waves in the approximation of geometrical optics. Izvestiya, Atmospheric and Oceanic Physics, 12, 519–523. https://doi.org/10.1134/S0001433813020102.

  • Yamagata, T. (1976a). On the propagation of Rossby waves in a weak shear flow. Journal of the Meteorological Society of Japan, 54(2), 126–127.

    Article  Google Scholar 

  • Yamagata, T. (1976b). On trajectories of Rossby wave-packets released in a lateral shear flow. Journal of the Oceanographic Society of Japan, 32, 162–168.

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by Russian Foundation for Basic Research # 20-05-00066. Section 3 was supported by Russian Science Foundation Grant # 19-72-30028 with the contribution of MIGO GROUP (http://migogroup.ru).

Funding

The work was funded by Russian Foundation for Basic Research # 20-05-00066. Section 3 was supported by Russian Science Foundation Grant # 19-72-30028 with the contribution of MIGO GROUP (http://migogroup.ru).

Author information

Authors and Affiliations

Authors

Contributions

VG presented the idea, made theoretical analysis, wrote the paper draft. SB checked the algebra, developed analysis of analytic results, wrote the text. TB plotted figures, wrote and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sergei I. Badulin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Wave Guide Trajectories Near the Critical Layer Within the WKBJ-Approximation

Appendix: Wave Guide Trajectories Near the Critical Layer Within the WKBJ-Approximation

Integration of the ray equations (38) for the wave vector component l with the initial condition \(l=l_0\) at \(t=0\) gives a linear dependence on time

$$\begin{aligned} l=l_0-kU_y t. \end{aligned}$$
(40)

Introduce the notation

$$\begin{aligned} \kappa ^2=k^2+a^2. \end{aligned}$$
(41)

Substituting (40) into ray equations for coordinates with initial condition \(x=0,\,y=0\) at \(t=0\) one gets

$$\begin{aligned} y=\frac{\beta }{kU_y}\left( \frac{k\cos \alpha - l \sin \alpha }{\kappa ^2+l^2 } - \frac{k\cos \alpha - l_0 \sin \alpha }{\kappa ^2+l_0^2 }\right) . \end{aligned}$$
(42)
$$\begin{aligned} \begin{aligned} x&= \frac{\beta }{k U_y} \frac{k^2\cos \alpha }{\kappa ^{3}} \left( \arctan \left( \frac{l_0}{\kappa } \right) - \arctan \left( \frac{l}{\kappa }\right) \right) \\&\quad - \frac{\beta }{kU_y}\dfrac{\sin \alpha }{2k} \ln \left( \frac{l^2+\kappa ^2}{l_0^2+\kappa ^2}\right) \\&\quad - \frac{\beta }{U_y} \left( \dfrac{k l \cos {\alpha } +a^2 \sin \alpha }{\kappa ^2\left( l^2+\kappa ^2\right) } - \dfrac{k l_0 \cos {\alpha } +a^2 \sin \alpha }{\kappa ^2 \left( l_0^2+\kappa ^2\right) } \right) +U_y y t. \end{aligned} \end{aligned}$$
(43)

The coordinate y tends to its limit at \(t=0\)

$$\begin{aligned} \lim _{t\rightarrow \infty } y = -\frac{1}{kU_y}\frac{\beta \left( k\cos \alpha -l_0 \sin \alpha \right) }{\kappa ^2+l_0^2} \end{aligned}$$
(44)

that is exactly the condition of the critical layer (22) with the dispersion relation (17). The asymptotic expression for the along-current coordinate in the general case of non-zonal current is

$$\begin{aligned} \lim _{t \rightarrow \infty }x=U_y y t+ O(\ln t). \end{aligned}$$
(45)

The case of zonal current, again, shows its degeneracy

$$\begin{aligned} \lim _{t \rightarrow \infty }x =U_y y t+ O(t^{-1}). \end{aligned}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnevyshev, V.G., Badulin, S.I. & Belonenko, T.V. Rossby Waves on Non-zonal Currents: Structural Stability of Critical Layer Effects. Pure Appl. Geophys. 177, 5585–5598 (2020). https://doi.org/10.1007/s00024-020-02567-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02567-0

Keywords

Navigation