Log in

Cayley–Klein geometries and projective-metric geometry

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Cayley and Klein discovered in the 19th century that Euclidean and non-Euclidean geometries can be introduced as geometries living inside of a projective-metric space. We present a new definition of projective-metric coordinate planes which allows a uniform analytic representation of Cayley–Klein geometries over ordered fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. We consider in this paper Cayley–Klein geometries of dimension 2.

  2. In Klein’s famous model of hyperbolic geometry the points of the hyperbolic plane \({\mathcal {H}}\) are the projective points which are interior of a non-degenerate conic \(\kappa \), and the lines of \({\mathcal {H}}\) are the secants of \(\kappa \). The hyperbolic distance between points A and B is (up to a multiple constant) the natural logarithm of the cross ratio of AB and the two points of \(\kappa \) which are incident with the joining line of A and B. The measurement of angles is obtained by a dualization of the measurement of distances (this requires, obviously, the extension of the field of real numbers to the field of complex numbers). In the Euclidean case the absolute conic is a pair of imaginary points, known as the ‘circular points at infinity’, and the measures of distances and angles are obtained from the hyperbolic case by a ‘passage to the limit’ (see Behnke et al. [7, p. 494]).

  3. As a reference for hyperbolic and Euclidean planes over arbitrary ordered fields we refer to Klingenberg [15] and Gupta and Piesyk [12].

  4. Equivalently, an isomorphism is a map** \(\varphi : {\mathcal {P}} \cup {\mathcal {L}} \rightarrow {\mathcal {P}} \cup {\mathcal {L}}\) with \({\mathcal {P}} \varphi = {\mathcal {P}}\) and \({\mathcal {L}} \varphi = {\mathcal {L}}\) which preserves the incidence relation (cp. Bachmann [4, p. 85]).

  5. In the literature about the foundations of geometry projective-metric coordinate planes are introduced as projective coordinate planes which are endowed with a single orthogonality relation; see Bachmann [4, p. 335] and Hessenberg and Diller [13, p. 207].

  6. We note that if a projectivity \(\sigma \) is induced by a linear map** \(\varphi \) which is represented by a matrix M (in point coordinates) then the transpose \((M^{-1})^{t}\) of \(M^{-1}\) represents \(\sigma \) in line coordinates [uvw].

  7. In the literature such substructures are sometimes called Eigentlichkeitsbereiche (see Bachmann [4]).

  8. We note that the motions of \({\mathfrak {C}}(K, p, q)\) are the motions of \({\mathfrak {P}}(K, p, q)\), restricted to the set of points and lines of \({\mathfrak {C}}(K, p, q)\). The groups of motions of \({\mathfrak {C}}(K, p, q)\) and of \({\mathfrak {P}}(K, p, q)\) are isomorphic (basically since they are generated by the same set of reflections).

  9. Please note that if (Aa) is any pole-polar pair with non-isotropic elements A and a then either A or a is an element of the hyperbolic plane.

  10. by the map** which associates to a point (xyz) of \({\mathfrak {P}}(K, -1, 1)\) the point (zyx) of \({\mathfrak {P}}(K, 1, -1)\) and to a line [uvw] of \({\mathfrak {P}}(K, -1, 1)\) the line [wvu] of \({\mathfrak {P}}(K, 1, -1)\)

  11. by the map** which associates to a point (xyz) of \({\mathfrak {P}}(K, -1, -1)\) the point (xzy) of \({\mathfrak {P}}(K, 1, -1)\) and to a line [uvw] of \({\mathfrak {P}}(K, -1, -1)\) the line [uwv] of \({\mathfrak {P}}(K, 1, -1)\)

  12. Please note that the order structure of a projective plane is a cyclic one. If the points and lines of the co-Minkowskian plane are defined equivalently by the conditions \(q_{_{{{\mathcal {P}}}}}(x, y, z) < 0\) and \(q_{_{{{\mathcal {L}}}}}(x, y, z) < 0\) then the strip consists of all points (xyz) of \({\mathfrak {P}}(K, p, q)\) with \(-1< z < 1\).

  13. The table should be read as follows “The set of points of an elliptic plane is the set of points of a projective plane”, and so on.

  14. According to Sylvester’s law of inertia the type of a Cayley–Klein coordinate plane is a projectively invariant notion.

References

  1. Ahrens, J., Dress, A., Wolff, H.: Relationen zwischen Symmetrien in orthogonalen Gruppen. J. Reine Angew. Math. 234, 1–11 (1969)

    MathSciNet  MATH  Google Scholar 

  2. A’Campo, N., Papadopoulos, A.: On Klein’s so-called Non-Euclidean geometry. In: Ji L., Papadopoulos, A. (eds.): Sophus Lie and Felix Klein: The Erlangen Program and its Impact in Mathematics and Physics. EMS IRMA Lectures in Mathematics and Theoretical Physics, vol. 23, pp. 91–136 (2015)

  3. Bachmann, F.: Modelle der ebenen absoluten Geometrie. J.-Ber. dtsch. Math.-Verein, 66, 152–170 (1964)

  4. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Heidelberg (1973)

  5. Bachmann, F.: Ebene Spiegelungsgeometrie. Eine Vorlesung über Hjelmslev-Gruppen. BI-Wissenschaftsverlag, Mannheim (1989)

    MATH  Google Scholar 

  6. Ballesteros, A., Herranz, F.J., Ragnisco, O., Santander, M.: Contractions, deformations and curvature. Int. J. Theor. Phys. 47, 649–663 (2008)

    Article  MathSciNet  Google Scholar 

  7. Behnke, H., Bachmann, F., et al.: Fundamentals of Mathematics, vol. II. Geometry. MIT Press, London (1974)

  8. Busemann, H., Kelly, P.J.: Projective Geometry and Projective Metrics. Dover Publications, New York (2006)

    MATH  Google Scholar 

  9. Cayley, A.: A sixth memoir upon quantics. Philos. Trans. R. Soc. London (1859) - cp. Collected Math. Papers, vol. 2. Cambridge (1889)

  10. Coxeter, H.S.M.: The Real Projective Plane, 3rd edn. Springer, New York (1993)

  11. Giering, O.: Vorlesungen über höhere Geometrie. Vieweg, Braunschweig (1982)

    Book  Google Scholar 

  12. Gupta, H.N., Piesyk, Z.: An axiomatization of two-dimensional Cartesian spaces over arbitrary ordered fields. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13, 549–550 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Hessenberg, G., Diller, J.: Grundlagen der Geometrie. Walter de Gruyter, Berlin (1967)

    MATH  Google Scholar 

  14. Klein, F.: Vorlesungen über nicht-euklidische Geometrie. Springer, Berlin (1928)

    MATH  Google Scholar 

  15. Klingenberg, W.: Eine Begründung der hyperbolischen Geometrie. Math. Ann. 127, 340–356 (1954)

    Article  MathSciNet  Google Scholar 

  16. Kowol, G.: Projektive Geometrie und Cayley-Klein Geometrien der Ebene. Birkhäuser, Berlin (2009)

    Book  Google Scholar 

  17. Lenz, H.: Vorlesungen über projektive Geometrie. Akademische Verlagsgesellschaft, Leipzig (1965)

    MATH  Google Scholar 

  18. Liebscher, D.-H.: The Geometry of Time. Wiley-VCH, Weinheim (2005)

    Book  Google Scholar 

  19. Lingenberg, R.: Metric Planes and Metric Vector Spaces. Wiley, New York (1979)

    MATH  Google Scholar 

  20. Onishchik, A.L., Sulanke, R.: Projective and Cayley–Klein Geometries. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Pambuccian, V.: The axiomatics of ordered geometry I. Ordered incidence spaces. Expo. Math. 29, 24–66 (2011)

    Article  MathSciNet  Google Scholar 

  22. Pambuccian, V., Struve, H., Struve, R.: Metric geometries in an axiomatic perspective. In: Ji, L., Papadopoulos, A., Yamada, S. (eds.) From Riemann to Differential Geometry and Relativity, pp. 413–455. Springer, Berlin (2017)

  23. Prieß-Crampe, S.: Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen. Springer, Berlin (1983)

    Book  Google Scholar 

  24. Richter-Gebert, J.: Perspectives on Projective Geometry. Springer, Berlin (2011)

    Book  Google Scholar 

  25. Struve, H.: Ein spiegelungsgeometrischer Aufbau der Galileischen Geometrie. Beiträge zur Algebra und Geometrie 17, 197–211 (1984)

    MathSciNet  MATH  Google Scholar 

  26. Struve, H., Struve, R.: Ein spiegelungsgeometrischer Aufbau der cominkowskischen Geometrie. Abh. Math. Sem. Univ. Hamburg 54, 111–118 (1984)

    Article  MathSciNet  Google Scholar 

  27. Struve, H., Struve, R.: Coeuklidische Hjelmslevgruppen. J. Geom. 34, 181–186 (1989)

    Article  MathSciNet  Google Scholar 

  28. Struve, H., Struve, R.: Non-euclidean geometries: the Cayley–Klein approach. J. Geom. 98, 151–170 (2010)

    Article  MathSciNet  Google Scholar 

  29. Wolff, H.: Minkowskische und absolute Geometrie I. Math. Ann. 171, 144–164 (1967)

    Article  MathSciNet  Google Scholar 

  30. Wolff, H.: Minkowskische und absolute Geometrie II. Math. Ann. 171, 165–193 (1967)

    Article  MathSciNet  Google Scholar 

  31. Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Springer, Heidelberg (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Struve.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struve, H., Struve, R. Cayley–Klein geometries and projective-metric geometry. J. Geom. 113, 32 (2022). https://doi.org/10.1007/s00022-022-00646-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-022-00646-2

Keywords

Mathematics Subject Classification

Navigation