Log in

A llama-derived gelsolin single-domain antibody blocks gelsolin–G-actin interaction

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

RNA interference has tremendously advanced our understanding of gene function but recent reports have exposed undesirable side-effects. Recombinant Camelid single-domain antibodies (VHHs) provide an attractive means for studying protein function without affecting gene expression. We raised VHHs against gelsolin (GsnVHHs), a multifunctional actin-binding protein that controls cellular actin organization and migration. GsnVHH-induced delocalization of gelsolin to mitochondria or the nucleus in mammalian cells reveals distinct subpopulations including free gelsolin and actin-bound gelsolin complexes. GsnVHH 13 specifically recognizes Ca2+-activated gelsolin (K d ~10 nM) while GsnVHH 11 binds gelsolin irrespective of Ca2+ (K d ~5 nM) but completely blocks its interaction with G-actin. Both GsnVHHs trace gelsolin in membrane ruffles of EGF-stimulated MCF-7 cells and delay cell migration without affecting F-actin severing/cap** or actin nucleation activities by gelsolin. We conclude that VHHs represent a potent way of blocking structural proteins and that actin nucleation by gelsolin is more complex than previously anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88:489–513

    Article  CAS  PubMed  Google Scholar 

  2. Kamioka H, Sugawara Y, Honjo T, Yamashiro T, Takano-Yamamoto T (2004) Terminal differentiation of osteoblasts to osteocytes is accompanied by dramatic changes in the distribution of actin-binding proteins. J Bone Miner Res 19:471–478

    Article  CAS  PubMed  Google Scholar 

  3. Cunningham CC, Stossel TP, Kwiatkowski DJ (1991) Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 251:1233–1236

    Article  CAS  PubMed  Google Scholar 

  4. De Corte V, Bruyneel E, Boucherie C, Mareel M, Vandekerckhove J, Gettemans J (2002) Gelsolin-induced epithelial cell invasion is dependent on Ras–Rac signaling. EMBO J 21:6781–6790

    Article  PubMed  Google Scholar 

  5. Thompson CC, Ashcroft FJ, Patel S, Saraga G, Vimalachandran D, Prime W, Campbell F, Dodson A, Jenkins RE, Lemoine, Crnogorac-Jurcevic T, Yin HL, Costello E (2007) Pancreatic cancer cells overexpress gelsolin family-cap** proteins, which contribute to their cell motility. Gut 56:95–106

    Article  CAS  PubMed  Google Scholar 

  6. Azuma T, Witke W, Stossel TP, Hartwig JH, Kwiatkowski DJ (1998) Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J 17:1362–1370

    Article  CAS  PubMed  Google Scholar 

  7. Gettemans J, Van Impe K, Delanote V, Hubert T, Vandekerckhove J, De Corte V (2005) Nuclear actin-binding proteins as modulators of gene transcription. Traffic 6:847–857

    Article  CAS  PubMed  Google Scholar 

  8. Ji L, Chauhan A, Wegiel J, Essa MM, Chauhan V (2009) Gelsolin is proteolytically cleaved in the brains of individuals with Alzheimer’s disease. J Alzheimers Dis 18:105–111

    CAS  PubMed  Google Scholar 

  9. Li GH, Shi Y, Chen Y, Sun M, Sader S, Maekawa Y, Arab S, Dawood F, Chen M, De Couto G, Liu Y, Fukuoka M, Yang S, Da Shi M, Kirshenbaum LA, McCulloh CA, Liu P (2009) Gelsolin regulates cardiac remodeling after myocardial infarction through DNase I-mediated apoptosis. Circ Res 104:896–904

    Article  CAS  PubMed  Google Scholar 

  10. Nishio R, Matsumori A (2009) Gelsolin and cardiac myocyte apoptosis: a new target in the treatment of postinfarction remodeling. Circ Res 104:829–831

    Article  CAS  PubMed  Google Scholar 

  11. Page LJ, Suk JY, Huff ME, Lim HJ, Venable J, Yates J, Kelly JW, Balch WE (2005) Metalloendoprotease cleavage triggers gelsolin amyloidogenesis. EMBO J 24:4124–4132

    Article  CAS  PubMed  Google Scholar 

  12. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  PubMed  Google Scholar 

  13. Sheriff S, Constantine KL (1996) Redefining the minimal antigen-binding fragment. Nat Struct Biol 3:733–736

    Article  CAS  PubMed  Google Scholar 

  14. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijlemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128:178–183

    Article  CAS  PubMed  Google Scholar 

  15. Davies J, Riechmann L (1996) Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 9:531–537

    Article  CAS  PubMed  Google Scholar 

  16. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single-domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  CAS  PubMed  Google Scholar 

  17. Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S (2001) Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob Agents Chemother 45:2807–2812

    Article  CAS  PubMed  Google Scholar 

  18. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 103:4586–4591

    Article  PubMed  Google Scholar 

  19. Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S, Wyns L (1999) A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure 7:361–370

    Article  CAS  PubMed  Google Scholar 

  20. Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F, Hamers R, Muyldermans S, Wyns L (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811

    Article  CAS  PubMed  Google Scholar 

  21. Gueorguieva D, Li S, Walsh N, Mukerji A, Tanha J, Pandey S (2006) Identification of single-domain, Bax-specific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB J 20:2636–2638

    Article  CAS  PubMed  Google Scholar 

  22. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backmann N, Conrath K, Muyldermans S, Cardoso MC, Leonhardt H (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889

    Article  CAS  PubMed  Google Scholar 

  23. Visintin M, Melchionna T, Cannistraci I, Cattaneo A (2008) In vivo selection of intrabodies specifically targeting protein–protein interactions: a general platform for an “undruggable” class of disease targets. J Biotechnol 135:1–15

    Article  CAS  PubMed  Google Scholar 

  24. Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555

    Article  CAS  PubMed  Google Scholar 

  25. Cao T, Heng BC (2005) Intracellular antibodies (intrabodies) versus RNA interference for therapeutic applications. Ann Clin Lab Sci 35:227–229

    CAS  PubMed  Google Scholar 

  26. Persengiev SP, Zhu X, Green MR (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10:12–18

    Article  CAS  PubMed  Google Scholar 

  27. McBride HM, Millar DG, Li JM, Shore GC (1992) A signal-anchor sequence selective for the mitochondrial outer membrane. J Cell Biol 119:1451–1457

    Article  CAS  PubMed  Google Scholar 

  28. Meerschaert K, De Corte V, De Ville Y, Vandekerckhove J, Gettemans J (1998) Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. EMBO J 17:5923–5932

    Article  CAS  PubMed  Google Scholar 

  29. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  30. Detmers P, Weber A, Elzinga M, Stephens RE (1981) 7-Chloro-4-nitrobenzeno-2-oxa-1, 3-diazole actin as a probe for actin polymerization. J Biol Chem 256:99–105

    CAS  PubMed  Google Scholar 

  31. Borek D, Minor W, Otwinowski Z (2003) Measurement errors and their consequences in protein crystallography. Acta Crystallogr D Biol Crystallogr 59:2031–2038

    Article  PubMed  Google Scholar 

  32. The CCP4 suite (1994) Programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  33. Cowtan KD, Main P (1993) Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr D Biol Crystallogr 49:148–157

    Article  CAS  PubMed  Google Scholar 

  34. Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) ARP/wARP and molecular replacement. Acta Crystallogr D Biol Crystallogr 57:1445–1450

    Article  CAS  PubMed  Google Scholar 

  35. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  36. Laskowski RA, Moss DS, Thornton JM (1993) Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231:1049–1067

    Article  CAS  PubMed  Google Scholar 

  37. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  38. Chaponnier C, Yin HL, Stossel TP (1987) Reversibility of gelsolin/actin interaction in macrophages. Evidence of Ca2 + -dependent and Ca2 + -independent pathways. J Exp Med 165:97–106

    Article  CAS  PubMed  Google Scholar 

  39. Bryan J, Kurth MC (1984) Actin–gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem 259:7480–7487

    CAS  PubMed  Google Scholar 

  40. van de Wijngaart DJ, van Royen ME, Hersmus R, Pike AC, Houtsmuller AB, Jenster G, Trapman J, Dubbink HJ (2006) Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J Biol Chem 281:19407–19416

    Article  PubMed  Google Scholar 

  41. Nishimura K, Ting HJ, Harada Y, Tokizane T, Nonomura N, Kang HY, Chang HC, Yeh S, Miyamoto H, Shin M, Aozasa K, Okuyama A, Chang C (2003) Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Res 63:4888–4894

    CAS  PubMed  Google Scholar 

  42. Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D (2004) Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61:2614–2623

    Article  CAS  PubMed  Google Scholar 

  43. Van den Abbeele A, De Corte V, Van Impe K, Bruyneel E, Boucherie C, Bracke M, Vandekerckhove J, Gettemans J (2007) Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro. Cancer Lett 255:57–70

    Article  PubMed  Google Scholar 

  44. Burtnick LD, Koepf EK, Grimes J, Jones EY, Stuart DI, McLaughlin PJ, Robinson RC (1997) The crystal structure of plasma gelsolin: implications for actin severing, cap**, and nucleation. Cell 90:661–670

    Article  CAS  PubMed  Google Scholar 

  45. Korotkov KV, Pardon E, Steyaert J, Hol WG (2009) Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17:255–265

    Article  CAS  PubMed  Google Scholar 

  46. Lam AY, Pardon E, Korotkov KV, Hol WG, Steyaert J (2009) Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J Struct Biol 166:8–15

    Article  CAS  PubMed  Google Scholar 

  47. Baldassare JJ, Henderson PA, Tarver A, Fisher GJ (1997) Thrombin activation of human platelets dissociates a complex containing gelsolin and actin from phosphatidylinositide-specific phospholipase Cgamma1. Biochem J 324(Pt 1):283–287

    CAS  PubMed  Google Scholar 

  48. Dadabay CY, Patton E, Cooper JA, Pike LJ (1991) Lack of correlation between changes in polyphosphoinositide levels and actin/gelsolin complexes in A431 cells treated with epidermal growth factor. J Cell Biol 112:1151–1156

    Article  CAS  PubMed  Google Scholar 

  49. Way M, Pope B, Weeds AG (1992) Are the conserved sequences in segment 1 of gelsolin important for binding actin? J Cell Biol 116:1135–1143

    Article  CAS  PubMed  Google Scholar 

  50. Heidemann SR, Kaech S, Buxbaum RE, Matus A (1999) Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J Cell Biol 145:109–122

    Article  CAS  PubMed  Google Scholar 

  51. Witke W, Li W, Kwiatkowski DJ, Southwick FS (2001) Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. J Cell Biol 154:775–784

    Article  CAS  PubMed  Google Scholar 

  52. West MA, Antoniou AN, Prescott AR, Azuma T, Kwiatkowski DJ, Watts C (1999) Membrane ruffling, macropinocytosis and antigen presentation in the absence of gelsolin in murine dendritic cells. Eur J Immunol 29:3450–3455

    Article  CAS  PubMed  Google Scholar 

  53. Cooper JA, Bryan J, Schwab B 3rd, Frieden C, Loftus DJ, Elson EL (1987) Microinjection of gelsolin into living cells. J Cell Biol 104:491–501

    Article  CAS  PubMed  Google Scholar 

  54. Nag S, Ma Q, Wang H, Chumnarnsilpa S, Lee WL, Larsson M, Kannan B, Hernandez-Valladares M, Burtnick LD, Robinson RC (2009) Ca2 + binding by domain 2 plays a critical role in the activation and stabilization of gelsolin. Proc Natl Acad Sci USA 106:13713–13718

    Article  CAS  PubMed  Google Scholar 

  55. Way M, Gooch J, Pope B, Weeds AG (1989) Expression of human plasma gelsolin in Escherichia coli and dissection of actin-binding sites by segmental deletion mutagenesis. J Cell Biol 109:593–605

    Article  CAS  PubMed  Google Scholar 

  56. Burtnick LD, Urosev D, Irobi E, Narayan K, Robinson RC (2004) Structure of the N-terminal half of gelsolin bound to actin: roles in severing, apoptosis and FAF. EMBO J 23:2713–2722

    Article  CAS  PubMed  Google Scholar 

  57. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D (2002) An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4:626–631

    CAS  PubMed  Google Scholar 

  58. Pope B, Way M, Weeds AG (1991) Two of the three actin-binding domains of gelsolin bind to the same subdomain of actin. Implications of cap** and severing mechanisms. FEBS Lett 280:70–74

    Article  CAS  PubMed  Google Scholar 

  59. Kwiatkowski DJ, Janmey PA, Yin HL (1989) Identification of critical functional and regulatory domains in gelsolin. J Cell Biol 108:1717–1726

    Article  CAS  PubMed  Google Scholar 

  60. Robinson RC, Mejillano M, Le VP, Burtnick LD, Yin HL, Choe S (1999) Domain movement in gelsolin: a calcium-activated switch. Science 286:1939–1942

    Article  CAS  PubMed  Google Scholar 

  61. Choe H, Burtnick LD, Mejillano M, Yin HL, Robinson RC, Choe S (2002) The calcium activation of gelsolin: insights from the 3A structure of the G4–G6/actin complex. J Mol Biol 324:691–702

    Article  CAS  PubMed  Google Scholar 

  62. Bryan J, Hwo S (1986) Definition of an N-terminal actin-binding domain and a C-terminal Ca2 + regulatory domain in human brevin. J Cell Biol 102:1439–1446

    Article  CAS  PubMed  Google Scholar 

  63. Kwiatkowski DJ, Janmey PA, Mole JE, Yin HL (1985) Isolation and properties of two actin-binding domains in gelsolin. J Biol Chem 260:15232–15238

    CAS  PubMed  Google Scholar 

  64. Ditsch A, Wegner A (1994) Nucleation of actin polymerization by gelsolin. Eur J Biochem 224:223–227

    Article  CAS  PubMed  Google Scholar 

  65. Hesterkamp T, Weeds AG, Mannherz HG (1993) The actin monomers in the ternary gelsolin: 2 actin complex are in an antiparallel orientation. Eur J Biochem 218:507–513

    Article  CAS  PubMed  Google Scholar 

  66. Doi Y (1992) Interaction of gelsolin with covalently cross-linked actin dimer. Biochemistry 31:10061–10069

    Article  CAS  PubMed  Google Scholar 

  67. Wille M, Just I, Wegner A, Aktories K (1992) ADP-ribosylation of gelsolin–actin complexes by clostridial toxins. J Biol Chem 267:50–55

    CAS  PubMed  Google Scholar 

  68. Roustan C, Lagarrigue E, Tement D, Maciver SK, Fattoum A, Benyamin Y (2006) Evidence for anti-parallel actin dimer formation by calcium-activated gelsolin and its role in the nucleation of actin assembly. Calc Bind Prot 1:45–50

    Google Scholar 

  69. Nolen BJ, Tomasevic N, Russell A, Pierce DW, Jia Z, McCormick CD, Hartman J, Sakowicz R, Pollard TD (2009) Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460:1031–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Evelien Martens for technical support. This work was supported by the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Stichting tegen Kanker, the Vlaamse Liga tegen Kanker, the Concerted Actions Program of Ghent University (GOA), the Interuniversity attraction poles (IUAP06) and the VIB. AVdA is supported by the Vlaamse Liga tegen Kanker through a grant of the Stichting Emmanuel van der Schueren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Gettemans.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Abbeele, A., De Clercq, S., De Ganck, A. et al. A llama-derived gelsolin single-domain antibody blocks gelsolin–G-actin interaction. Cell. Mol. Life Sci. 67, 1519–1535 (2010). https://doi.org/10.1007/s00018-010-0266-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0266-1

Keywords

Navigation