Log in

Transcriptional effects of actin-binding compounds: the cytoplasm sets the tone

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Actin has emerged as a versatile regulator of gene transcription. Cytoplasmatic actin regulates mechanosensitive-signaling pathways such as MRTF–SRF and Hippo-YAP/TAZ. In the nucleus, both polymerized and monomeric actin directly interfere with transcription-associated molecular machineries. Natural actin-binding compounds are frequently used tools to study actin-related processes in cell biology. However, their influence on transcriptional regulation and intranuclear actin polymerization is poorly understood to date. Here, we analyze the effects of two representative actin-binding compounds, Miuraenamide A (polymerizing properties) and Latrunculin B (depolymerizing properties), on transcriptional regulation in primary cells. We find that actin stabilizing and destabilizing compounds inversely shift nuclear actin levels without a direct influence on polymerization state and intranuclear aspects of transcriptional regulation. Furthermore, we identify Miuraenamide A as a potent inducer of G-actin-dependent SRF target gene expression. In contrast, the F-actin-regulated Hippo-YAP/TAZ axis remains largely unaffected by compound-induced actin aggregation. This is due to the inability of AMOTp130 to bind to the amorphous actin aggregates resulting from treatment with miuraenamide. We conclude that actin-binding compounds predominantly regulate transcription via their influence on cytoplasmatic G-actin levels, while transcriptional processes relying on intranuclear actin polymerization or functional F-actin networks are not targeted by these compounds at tolerable doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212. https://doi.org/10.1126/science.1175862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Virtanen JA, Vartiainen MK (2017) Diverse functions for different forms of nuclear actin. Curr Opin Cell Biol 46:33–38. https://doi.org/10.1016/j.ceb.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Falahzadeh K, Banaei-Esfahani A, Shahhoseini M (2015) The potential roles of actin in the nucleus. Cell J 17(1):7–14

    PubMed  PubMed Central  Google Scholar 

  4. de Lanerolle P, Serebryannyy L (2011) Nuclear actin and myosins: life without filaments. Nat Cell Biol 13(11):1282–1288. https://doi.org/10.1038/ncb2364

    Article  CAS  PubMed  Google Scholar 

  5. Vartiainen MK (2008) Nuclear actin dynamics—from form to function. FEBS Lett 582(14):2033–2040. https://doi.org/10.1016/j.febslet.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Szerlong H, Hinata K, Viswanathan R, Erdjument-Bromage H, Tempst P, Cairns BR (2008) The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat Struct Mol Biol 15(5):469–476. https://doi.org/10.1038/nsmb.1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kapoor P, Shen X (2014) Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol 24(4):238–246. https://doi.org/10.1016/j.tcb.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  8. Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozak P, Grummt I (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6(12):1165–1172. https://doi.org/10.1038/ncb1190

    Article  CAS  PubMed  Google Scholar 

  9. Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, Kysela K, Goodrich JA, Lessard JL, Hope TJ, Hozak P, de Lanerolle P (2004) Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol 6(11):1094–1101. https://doi.org/10.1038/ncb1182

    Article  CAS  PubMed  Google Scholar 

  10. Hu P, Wu S, Hernandez N (2004) A role for beta-actin in RNA polymerase III transcription. Genes Dev 18(24):3010–3015. https://doi.org/10.1101/gad.1250804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Almuzzaini B, Sarshad AA, Rahmanto AS, Hansson ML, Von Euler A, Sangfelt O, Visa N, Farrants AK, Percipalle P (2016) In beta-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. FASEB J Off Publ Fed Am Soc Exp Biolgy 30(8):2860–2873. https://doi.org/10.1096/fj.201600280R

    Article  CAS  Google Scholar 

  12. Serebryannyy LA, Cruz CM, de Lanerolle P (2016) A role for nuclear actin in HDAC 1 and 2 regulation. Sci Rep 6:28460. https://doi.org/10.1038/srep28460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Toh KC, Ramdas NM, Shivashankar GV (2015) Actin cytoskeleton differentially alters the dynamics of lamin A, HP1alpha and H2B core histone proteins to remodel chromatin condensation state in living cells. Integr Biol (Camb). https://doi.org/10.1039/c5ib00027k

    Article  Google Scholar 

  14. Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125(Pt 13):3061–3073. https://doi.org/10.1242/jcs.093005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baarlink C, Wang H, Grosse R (2013) Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340(6134):864–867. https://doi.org/10.1126/science.1235038

    Article  CAS  PubMed  Google Scholar 

  16. Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16(11):588–596. https://doi.org/10.1016/j.tcb.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  17. Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752. https://doi.org/10.1126/science.1141084

    Article  CAS  PubMed  Google Scholar 

  18. Mana-Capelli S, Paramasivam M, Dutta S, McCollum D (2014) Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell 25(10):1676–1685. https://doi.org/10.1091/mbc.E13-11-0701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25(1):51–63. https://doi.org/10.1101/gad.2000111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 286(9):7018–7026. https://doi.org/10.1074/jbc.C110.212621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaspar P, Tapon N (2014) Sensing the local environment: actin architecture and Hippo signalling. Curr Opin Cell Biol 31:74–83. https://doi.org/10.1016/j.ceb.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  22. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138(18):3907–3914. https://doi.org/10.1242/dev.070987

    Article  CAS  PubMed  Google Scholar 

  23. Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci CMLS 63(18):2119–2134. https://doi.org/10.1007/s00018-006-6157-9

    Article  CAS  PubMed  Google Scholar 

  24. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11(5):353–365. https://doi.org/10.1038/nrm2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Collin O, Na S, Chowdhury F, Hong M, Shin ME, Wang F, Wang N (2008) Self-organized podosomes are dynamic mechanosensors. Curr Biol 18(17):1288–1294. https://doi.org/10.1016/j.cub.2008.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang CY, Leu JD, Lee YJ (2015) The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 16(2):4095–4120. https://doi.org/10.3390/ijms16024095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ojima D, Yasui A, Tohyama K, Tokuzumi K, Toriihara E, Ito K, Iwasaki A, Tomura T, Ojika M, Suenaga K (2016) Total synthesis of miuraenamides A and D. J Org Chem 81(20):9886–9894. https://doi.org/10.1021/acs.joc.6b02061

    Article  CAS  PubMed  Google Scholar 

  28. Karmann L, Schultz K, Herrmann J, Muller R, Kazmaier U (2015) Total syntheses and biological evaluation of miuraenamides. Angew Chem Int Ed Engl 54(15):4502–4507. https://doi.org/10.1002/anie.201411212

    Article  CAS  PubMed  Google Scholar 

  29. Iizuka T, Fudou R, Jojima Y, Ogawa S, Yamanaka S, Inukai Y, Ojika M (2006) Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. J Antibiot (Tokyo) 59(7):385–391. https://doi.org/10.1038/ja.2006.55

    Article  CAS  Google Scholar 

  30. Cheng Z, Garvin D, Paguio A, Stecha P, Wood K, Fan F (2010) Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genom 4:84–91. https://doi.org/10.2174/1875397301004010084

    Article  CAS  Google Scholar 

  31. Hendrix J, Baumgartel V, Schrimpf W, Ivanchenko S, Digman MA, Gratton E, Krausslich HG, Muller B, Lamb DC (2015) Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. J Cell Biol 210(4):629–646. https://doi.org/10.1083/jcb.201504006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Small J, Rottner K, Hahne P, Anderson KI (1999) Visualising the actin cytoskeleton. Microsc Res Tech 47(1):3–17. https://doi.org/10.1002/(SICI)1097-0029(19991001)47:1%3c3:AID-JEMT2%3e3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  33. Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS (2014) Characterization of directed differentiation by high-throughput single-cell RNA-Seq. BioRxiv. https://doi.org/10.1101/003236

    Article  Google Scholar 

  34. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I (2017) zUMIs: A fast and flexible pipeline to process RNA sequencing data with UMIs. BioRxiv. https://doi.org/10.1101/153940

    Article  Google Scholar 

  35. McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol 172(4):541–552. https://doi.org/10.1083/jcb.200507101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689. https://doi.org/10.1006/jmbi.2000.3692

    Article  CAS  PubMed  Google Scholar 

  37. Brown CM, Dalal RB, Hebert B, Digman MA, Horwitz AR, Gratton E (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc 229(Pt 1):78–91. https://doi.org/10.1111/j.1365-2818.2007.01871.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hendrix J, Lamb DC (2014) Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS. Methods Mol Biol 1076:653–682. https://doi.org/10.1007/978-1-62703-649-8_30

    Article  PubMed  Google Scholar 

  39. Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327. https://doi.org/10.1529/biophysj.105.062836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hendrix J, Schrimpf W, Holler M, Lamb DC (2013) Pulsed interleaved excitation fluctuation imaging. Biophys J 105(4):848–861. https://doi.org/10.1016/j.bpj.2013.05.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hendrix J, Dekens T, Schrimpf W, Lamb DC (2016) Arbitrary-region raster image correlation spectroscopy. Biophys J 111(8):1785–1796. https://doi.org/10.1016/j.bpj.2016.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342

    Article  CAS  PubMed  Google Scholar 

  43. Reddy P, Deguchi M, Cheng Y, Hsueh AJ (2013) Actin cytoskeleton regulates Hippo signaling. PLoS One 8(9):e73763. https://doi.org/10.1371/journal.pone.0073763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28(9):943–958. https://doi.org/10.1101/gad.239327.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S (2015) Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 17(9):1218–1227. https://doi.org/10.1038/ncb3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Belin BJ, Cimini BA, Blackburn EH, Mullins RD (2013) Visualization of actin filaments and monomers in somatic cell nuclei. Mol Biol Cell 24(7):982–994. https://doi.org/10.1091/mbc.E12-09-0685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Melak M, Plessner M, Grosse R (2017) Actin visualization at a glance. J Cell Sci. https://doi.org/10.1242/jcs.189068

    Article  PubMed  Google Scholar 

  48. Miyamoto K, Gurdon JB (2013) Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci CMLS 70(18):3289–3302. https://doi.org/10.1007/s00018-012-1235-7

    Article  CAS  PubMed  Google Scholar 

  49. Rajakyla EK, Vartiainen MK (2014) Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 5:e27539. https://doi.org/10.4161/sgtp.27539

    Article  PubMed  PubMed Central  Google Scholar 

  50. Spencer VA, Costes S, Inman JL, Xu R, Chen J, Hendzel MJ, Bissell MJ (2011) Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 124(Pt 1):123–132. https://doi.org/10.1242/jcs.073197

    Article  CAS  PubMed  Google Scholar 

  51. Dopie J, Skarp KP, Rajakyla EK, Tanhuanpaa K, Vartiainen MK (2012) Active maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci USA 109(9):E544–E552. https://doi.org/10.1073/pnas.1118880109

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sharili AS, Kenny FN, Vartiainen MK, Connelly JT (2016) Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes. Sci Rep 6:33893. https://doi.org/10.1038/srep33893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stuven T, Hartmann E, Gorlich D (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22(21):5928–5940. https://doi.org/10.1093/emboj/cdg565

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pollard TD (2016) Actin and actin-binding proteins. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a018226

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baarlink C, Plessner M, Sherrard A, Morita K, Misu S, Virant D, Kleinschnitz EM, Harniman R, Alibhai D, Baumeister S, Miyamoto K, Endesfelder U, Kaidi A, Grosse R (2017) A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat Cell Biol. https://doi.org/10.1038/ncb3641

    Article  PubMed  Google Scholar 

  56. Plessner M, Grosse R (2015) Extracellular signaling cues for nuclear actin polymerization. Eur J Cell Biol. https://doi.org/10.1016/j.ejcb.2015.05.009

    Article  PubMed  Google Scholar 

  57. Belin BJ, Lee T, Mullins RD (2015) DNA damage induces nuclear actin filament assembly by formin-2 and spire-(1/2) that promotes efficient DNA repair. Elife. https://doi.org/10.7554/eLife.07735

    Article  PubMed  PubMed Central  Google Scholar 

  58. Matsui Y, Lai ZC (2013) Mutual regulation between Hippo signaling and actin cytoskeleton. Protein Cell 4(12):904–910. https://doi.org/10.1007/s13238-013-3084-z

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371. https://doi.org/10.1101/gad.210773.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dai X, She P, Chi F, Feng Y, Liu H, ** D, Zhao Y, Guo X, Jiang D, Guan KL, Zhong TP, Zhao B (2013) Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem 288(47):34041–34051. https://doi.org/10.1074/jbc.M113.518019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Isermann P, Lammerding J (2013) Nuclear mechanics and mechanotransduction in health and disease. Curr Biol 23(24):R1113–R1121. https://doi.org/10.1016/j.cub.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  62. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102(11):1307–1318. https://doi.org/10.1161/CIRCRESAHA.108.173989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the labs of Prof. Robert Grosse and Prof. Bin Zhao for the sharing of plasmids and fruitful scientific discussions. We, furthermore, thank Jana Peliskova for excellent technical assistance and Dr. Lisa Karmann for providing synthetic samples of Miuraenamide A. This work was funded by the Deutsche Forschungsgemeinschaft (DFG), SFB 1032, projects B08 and B03, and FOR1406.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zahler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gegenfurtner, F.A., Zisis, T., Al Danaf, N. et al. Transcriptional effects of actin-binding compounds: the cytoplasm sets the tone. Cell. Mol. Life Sci. 75, 4539–4555 (2018). https://doi.org/10.1007/s00018-018-2919-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2919-4

Keywords

Navigation