Log in

The microstructure and fracture properties of MgO crystals containing a dispersed phase

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MgO crystals containing up to 40% by volume of magnesioferrite and up to 2% by volume of iron and nickel were produced by a diffusion technique followed by appropriate heat treatments. Magnesioferrite precipitate did not significantly change the effective surface energy of a crack as measured by the double cantilever beam technique. Iron and nickel precipitate was produced in the form of platelets lying on {100}MgO planes whose orientation relationships were [001]MgO ∥[001]Fe, [110]MgO ∥[100]Fe with a spread of +10°, approximately, and [001]MgO ∥[001]Ni, [010]MgO ∥[010]Ni with negligible spread. Despite the crystallographic orientation relationships, the metal-MgO interface appeared to be very weak; the reasons for this are discussed. The effect of the metal precipitate on crack propagation was to markedly increase the density of cleavage steps. For a volume fraction of precipitate of 0.02, this led to a small increase in the effective surface energy, on the order of 1 Jm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Groves,Proc. Brit. Ceram. Soc. 15 (1970) 103.

    Google Scholar 

  2. M. E. Fine,Trans. Japan Inst. Metals 9 (1968) 527.

    CAS  Google Scholar 

  3. G. W. Groves, “Strengthening Methods in Crystals”, ed. A. Kelly and R. B. Nicholson (Elsevier, Amsterdam, 1971) p. 403.

    Google Scholar 

  4. S. E. Hsu, W. Kobes, andM. E. Fine,J. Amer. Ceram. Soc. 50 (1967) 149.

    CAS  Google Scholar 

  5. C. T. Forwood andA. J. Forty,Phil. Mag. 11 (1965) 1067.

    CAS  Google Scholar 

  6. C. T. Forwood,ibid 17 (1968) 657.

    CAS  Google Scholar 

  7. G. W. Groves andM. E. Fine,J. Appl. Phys. 35 (1964) 3587.

    Article  CAS  Google Scholar 

  8. R. W. Davidge,J. Mater. Sci. 2 (1967) 339.

    Article  CAS  Google Scholar 

  9. J. J. Gilman,J. Appl. Phys. 31 (1960) 2208.

    Article  CAS  Google Scholar 

  10. D. A. Shockey andG. W. Groves,J. Amer. Ceram. Soc. 51 (1968) 229.

    Google Scholar 

  11. P. P. Gillis andJ. J. Gilman,J. Appl. Phys. 35 (1964) 647.

    Article  Google Scholar 

  12. S. M. Wiederhorn, A. M. Shore, andR. L. Moses,ibid 39 (1968) 1569.

    Article  Google Scholar 

  13. J. E. Scrawley andB. Gross,Mat. Res. Std. 7 (1967) 155.

    Google Scholar 

  14. J. J. Gilman,J. Appl. Phys. 27 (1956) 1262.

    Article  CAS  Google Scholar 

  15. F. F. Lange andK. H. D. Lambe,Phil. Mag. 18 (1968) 129.

    CAS  Google Scholar 

  16. C. D. R. Langton, B.Sc. Thesis, Oxford 1969.

  17. A. G. Evans,Phil. Mag. 22 (1970) 841.

    CAS  Google Scholar 

  18. B. Phillips, S. Somiya, andA. Muan,J. Amer. Ceram. Soc. 44 (1961) 167.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hing, P., Groves, G.W. The microstructure and fracture properties of MgO crystals containing a dispersed phase. J Mater Sci 7, 422–426 (1972). https://doi.org/10.1007/BF02403405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403405

Keywords

Navigation