Science and Technology of Wool Fibers

  • Reference work entry
  • First Online:
Handbook of Biomass

Abstract

Sheep wool is a valuable natural and renewable resource that is commonly utilized by the textile sector for producing clothing, carpets, socks, rugs, and also sometimes as fertilizers. Wool has gained use as a substitute material in various industrial fields, elevating the significance of fiber. The wool does not irritate the skin, eyes, or respiratory system, making it suitable for usage in a variety of industries without the need for protective apparel. The wool has a significant hygroscopicity, making it an effective acoustic insulating medium. The production of sheep wool fibers has increased in response to the growing demand for alternative materials in the construction industry. Wool fiber is used in the building industry for its potential as a thermal and acoustic insulator. Wool fiber is a flexible natural material that can be used as an adsorbent for cleaning indoor air and removing pollutants from industrial wastewater. Some notable efforts in wool science and technology include the utilization of substandard and waste wool for technical purposes and the implementation of nanotechnology to wool for creating innovative, high-value wool products. Moreover, sheep wool has many advantages for sustainability, including a decrease in environmental pollution and the expense of manufacturing new insulating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A.M. Abdallah, F. Ugolini, S. Baronti, A. Maienza, F. Ungaro, F. Camilli, Assessment of two sheep wool residues from textile industry as organic fertilizer in sunflower and maize cultivation. J. Soil Sci. Plant Nutr. 19(4) (2019). https://doi.org/10.1007/s42729-019-00079-y

  • M. Adi, I. Păcurar, Study on the use sheep wool, in soil and fertilozation as the mixture into cubes nutrients. ProEnviron Promediu 8(22), 290–292 (2015)

    Google Scholar 

  • F. Allafi, M.S. Hossain, J. Lalung, M. Shaah, A. Salehabadi, M.I. Ahmad, A. Shadi, Advancements in applications of natural wool fiber. J. Nat. Fibers 19(2), 497–512 (2022). https://doi.org/10.1080/15440478.2020.1745128

    Article  CAS  Google Scholar 

  • R. Alyousef, K. Aldossari, O. Ibrahim, H. Mustafa, A. Jabr, Effect of sheep wool fiber on fresh and hardened properties of fiber reinforced concrete. Int. J. Civ. Eng. Technol. 10, 190 (2019)

    Google Scholar 

  • L. Ammayappan, Eco-friendly surface modifications of wool fiber for its improved functionality: an overview. Asian J Textile 3(1) (2013). https://doi.org/10.3923/ajt.2013.15.28

  • A.M. Anpilov, E.M. Barkhudarov, Y.B. Bark, Y.V. Zadiraka, M. Christofi, Y.N. Kozlov, I.A. Kossyi, V.A. Kop’Ev, V.P. Silakov, M.I. Taktakishvili, S.M. Temchin, Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J. Phys. D. Appl. Phys. 34(6) (2001). https://doi.org/10.1088/0022-3727/34/6/322

  • T. Asaulyuk, O. Semeshko, Y. Saribyekova, O. Kunik, S. Myasnikov, Examining a change in the properties of coarse wool fiber under the influence of electrical discharge treatment. East. Eur. J. Adv. Technol. 4(1) (2017). https://doi.org/10.15587/1729-4061.2017.108269

  • A. Atbir, M. Taibi, B. Aouan, A. Khabbazi, O. Ansari, M. Cherkaoui, T. Cherradi, Physicochemical and thermomechanical performances study for Timahdite sheep wool fibers application in the building’s insulation. Sci. Rep. 13(1) (2023). https://doi.org/10.1038/s41598-023-31516-9

  • N. Balkaya, N. Bektas, Chromium (VI) sorption from dilute aqueous solutions using wool. Desalin. Water Treat. 3(1–3) (2009). https://doi.org/10.5004/dwt.2009.473

  • M.D. Berechet, D. Simion, M. Stanca, C.A. Alexe, C. Chelaru, R.Ã.P.Ă. Maria, Keratin hydrolysates extracted from sheep wool with potential use as organic fertilizer. Rev. Pielarie Incaltaminte 20(3) (2020). https://doi.org/10.24264/lfj.20.3.5

  • P.S. Bhavsar, Green hydrolysis of waste wool. Ph. D. thesis, Gheorghe Asachi Technical University of Iasi, Romania (2020). https://doi.org/10.6092/polito/porto/2706807

  • B. Bhavsar, T. Balan, G. Dalla Fontana, M. Zoccola, A. Patrucco, C. Tonin, Sustainably processed waste wool fiber-reinforced biocomposites for agriculture and packaging applications. Fibers 9(9) (2021). https://doi.org/10.3390/fib9090055

  • D. Bosia, L. Savio, F. Thiebat, A. Patrucco, S. Fantucci, G. Piccablotto, D. Marino, Sheep wool for sustainable architecture. Energy Procedia 78 (2015). https://doi.org/10.1016/j.egypro.2015.11.650

  • Z. Czaplicki, K. Ruszkowski, Optimization of scouring alpaca wool by ultrasonic technique. J. Nat. Fibers 11 (2014). https://doi.org/10.1080/15440478.2013.864577

  • O. Das, N.K. Kim, A.K. Sarmah, D. Bhattacharyya, Development of waste based biochar/wool hybrid biocomposites: flammability characteristics and mechanical properties. J. Clean. Prod. 144 (2017). https://doi.org/10.1016/j.jclepro.2016.12.155

  • R. Del Rey, J. Alba, J. Ramis, V.J. Sanchís, New absorbent acoustic materials from plastic bottle remnants. Mater. Constr. 61(304) (2011). https://doi.org/10.3989/mc.2011.59610

  • O. Dénes, I. Florea, D.L. Manea, Utilization of sheep wool as a building material. Procedia Manuf. 32 (2019). https://doi.org/10.1016/j.promfg.2019.02.208

  • T.O. Dénes, R. Iştoan, D.R. Tǎmaş-Gavrea, D.L. Manea, A. Hegyi, F. Popa, O. Vasile, Analysis of sheep wool-based composites for building insulation. Polymers 14(10) (2022). https://doi.org/10.3390/polym14102109

  • E.K. Doyle, J.W. Preston, B.A. McGregor, P.I. Hynd, The science behind the wool industry. The importance and value of wool production from sheep. Anim. Front. 11(2), 15 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • S. Enkhzaya, K. Shiomori, B. Oyuntsetseg, Effective adsorption of Au (III) and Cu (II) by chemically treated sheep wool and the binding mechanism. J. Environ. Chem. Eng. 8(5), 104021 (2020)

    Article  CAS  Google Scholar 

  • U.H. Erdogan, Y. Seki, F. Selli, Wool fibres, in Handbook of Natural Fibres (Woodhead Publishing, Duxford, 2020)

    Google Scholar 

  • A.P. Fantilli, D. Jóźwiak-Niedźwiedzka, Influence of Portland cement alkalinity on wool-reinforced mortar. Proc. Inst. Civil Eng.-Constr. Mater. 174(3) (2021). https://doi.org/10.1680/jcoma.20.00003

  • A.P. Fantilli, S. Sicardi, F. Dotti, The use of wool as fiber-reinforcement in cement-based mortar. Acad. J. Civ. Eng. 33(2) (2015). https://doi.org/10.26168/icbbm2015.52

  • A. Farrokhnia, S. Abdolahpour, Z. Abbasi, Removal of Pb (II) ion and safranin dye from aqueous solution by sheep wool. Iran. J. Chem. Chem. Eng. 38(5), 155 (2019)

    Google Scholar 

  • V. Fiore, G. Di Bella, A. Valenza, Effect of sheep wool fibers on thermal insulation and mechanical properties of cement-based composites. J. Nat. Fibers 17(10) (2020). https://doi.org/10.1080/15440478.2019.1584075

  • R.S. Górecki, M.T. Górecki, Utilization of waste wool as substrate amendment in pot cultivation of tomato, sweet pepper, and eggplant. Pol. J. Environ. Stud. 19(5), 1083 (2010)

    Google Scholar 

  • L.A. Holt, J. Lax, L. Moll, The effect of weathering and weathering control measures on the colour of scoured wool. Wool Technol. Sheep Breed (Australia) 42, 151–159 (1994)

    Google Scholar 

  • N.A.G. Johnson, E.J. Wood, P.E. Ingham, S.J. McNeil, I.D. McFarlane, Wool as a technical fibre. J. Text. Inst. 94(3–4) (2003). https://doi.org/10.1080/00405000308630626

  • J.H. Johnston, K.A. Burridge, F.M. Kelly, A.C. Small, NZ patent application 589498 (2010)

    Google Scholar 

  • L.N. Jones, D.E. Rivett, D.J. Tucker, Wool and related mammalian fibres, in Handbook of Fiber Chemistry, ed. by M. Lewin (CRC Press, Boca Raton, 2006)

    Google Scholar 

  • D. Jóźwiak-Niedźwiedzka, A.P. Fantilli, Wool-reinforced cement based composites. Materials 13(16) (2020). https://doi.org/10.3390/ma13163590

  • J.K. Katoh, M. Shibayama, T. Tanabe, K. Yamauchi, Preparation and properties of keratin–poly (vinyl alcohol) blend fiber. J. Appl. Polym. Sci. 91(2) (2004). https://doi.org/10.1002/app.13236

  • R. Khajavi, P. Azari, Effects of ultrasound irradiation on wet wool chlorination treatment. Pak. J. Biol. Sci.: PJBS 10(16) (2007). https://doi.org/10.3923/pjbs.2007.2732.2735

  • M.J. Khan, A. Abbas, M. Ayaz, M. Naeem, M.S. Akhter, M.H. Soomro, Factors affecting wool quality and quantity in sheep. Afr. J. Biotechnol. 11(73) (2012). https://doi.org/10.5897/AJBX11.064

  • M. Komorowska, M. Niemiec, J. Sikora, Z. Gródek-Szostak, H. Gurgulu, M. Chowaniak, A. Atilgan, P. Neuberger, Evaluation of sheep wool as a substrate for hydroponic cucumber cultivation. Agriculture 13(3) (2023). https://doi.org/10.3390/agriculture13030554

  • A. Korjenic, S. Klarić, A. Hadžić, S. Korjenic, Sheep wool as a construction material for energy efficiency improvement. Energies 8(6), 5765 (2015)

    Article  Google Scholar 

  • R. Kozlowski, R. Kozłowski (eds.), Types, Properties and Factors Affecting Breeding and Cultivation (Woodhead Publishing, Oxford, 2012)

    Google Scholar 

  • H. Kuffner, C. Popescu, Wool fibres, in Handbook of Natural Fibres (Woodhead Publishing, 2012). https://doi.org/10.1533/9780857095503.1.171

    Chapter  Google Scholar 

  • A. Kunik, O. Semeshko, T. Asaulyuk, Y. Saribyekova, S. Myasnykov, Development of a two-step technology of scouring wool by the method of high-energy discrete treatment. East.-Eur. J. Enterprise Technol. 4 (2016). https://doi.org/10.15587/1729-4061.2016.76380

  • K. Laitala, I.G. Klepp, B. Henry, Does use matter? Comparison of environmental impacts of clothing based on fiber type. Sustainability 10(7) (2018). https://doi.org/10.3390/su10072524

  • B. Lal, S.C. Sharma, R.L. Meena, S. Sarkar, A. Sahoo, R.C. Balai, P. Gautam, B.P. Meena, Utilization of byproducts of sheep farming as organic fertilizer for improving soil health and productivity of barley forage. J. Environ. Manag. 269 (2020). https://doi.org/10.1016/j.jenvman.2020.110765

  • M.Y. Leung, T.X. Yu, Dynamic characterization of micro-scaled samples using the Hopkinson tensile bar technique. J. Strain Anal. Eng. Des. 43(7) (2008). https://doi.org/10.1243/03093247JSA402

  • Q. Li, C. Ding, H. Yu, C.J. Hurren, X. Wang, Adapting ultrasonic assisted wool scouring for industrial application. Text. Res. J. 84 (2014). https://doi.org/10.1177/0040517512474365

  • L. Long, S. Lei, J. Guiqin, Properties of wool fibers treated under high-temperature water and steam. J. Appl. Polym. Sci. 109(2) (2008). https://doi.org/10.1002/app.28078

  • J. Manivannan, S. Rajesh, K. Mayandi, N. Ra**i, S.O. Ismail, F. Mohammad, M.K. Kuzman, H.A. Al-Lohedan, Animal fiber characterization and fiber loading effect on mechanical behaviors of sheep wool fiber reinforced polyester composites. J Nat Fibers 19(11), 4007–4023 (2022)

    Google Scholar 

  • E. Mansour, Wool fibres for the sorption of volatile organic compounds (VOCs) from indoor air. Bangor University (United Kingdom) (2018)

    Google Scholar 

  • B. Mehravani, A.I. Ribeiro, A. Zille, Gold nanoparticles synthesis and antimicrobial effect on fibrous materials. Nanomaterials 11(5), 1067 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Natarajan, D. Gupta, Launderometer based test method for determining shrinkage of wool. J. Text. Inst. 109 (2018). https://doi.org/10.1080/00405000.2017.1422962

  • E. Ordiales, J.I. Gutiérrez, L. Zajara, J. Gil, M. Lanzke, Assessment of utilization of sheep wool pellets as organic fertilizer and soil amendment in processing tomato and broccoli. Modern Agric. Sci. Technol. 2(2) (2016). https://doi.org/10.15341/mast(2375-9402)/02.02.2016/003

  • M.C. Parlato, S.M. Porto, Organized framework of main possible applications of sheep wool fibers in building components. Sustainability 12(3), 761 (2020)

    Article  CAS  Google Scholar 

  • E. Pekhtasheva, A. Neverov, S. Kubica, G. Zaikov, Biodegradation and biodeterioration of some natural polymers. Chem. Chem. Technol. 5(1), 265–280 (2011)

    Google Scholar 

  • C. Pereira, A.M. Pereira, C. Freire, T.V. Pinto, R.S. Costa, J.S. Teixeira, Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing, in Handbook of Functionalized Nanomaterials for Industrial Applications (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-816787-8.00021-1

    Chapter  Google Scholar 

  • A. Podjava, A. Zarins, L. Avotina, K. Shvirksts, L. Baumane, D.A. Rasmane, M. Grube, G. Kizane, Latvian sheep wool fiber as a cheap natural adsorbent for the removal of Congo red dye from wastewater. Water Air Soil Pollut. 233(11) (2022). https://doi.org/10.1007/s11270-022-05915-z

  • C. Popescu, F.J. Wortmann, Wool–structure, mechanical properties and technical products based on animal fibres, in Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, vol. 10 (John Wiley & Sons Ltd, Chichester, UK, 2010)

    Google Scholar 

  • D.P. Poppi, S.R. McLennan, Nutritional research to meet future challenges. Anim. Prod. Sci. 50(6) (2010). https://doi.org/10.1071/AN09230

  • J. Ramis, J. Alba, R. Del Rey, E. Escuder, V.J. Sanchís, New absorbent material acoustic based on kenaf’s fibre. Mater. Constr. 60(299) (2010). https://doi.org/10.3989/mc.2010.50809

  • J.A. Rippon, The structure of wool In book: The Coloration of Wool and other Keratin Fibres. SDC (Society of Dyers and Colourists). Published 2013 by John Wiley & Sons, Ltd. 1–35 (2013).

    Google Scholar 

  • T. Romanovska, М. Oseiko, S. Bazhay-Zhezherun, O. Yarmolitska, Rational modes of wool scouring. Ukr. J. Food Sci. 7 (2019). https://doi.org/10.24263/2310-1008-2019-7-2-13

  • M. Saxena, A. Pappu, A. Sharma, R. Haque, S. Wankhede, Composite Materials from Natural Resources: Recent Trends and Future Potentials (IntechOpen, 2011). https://doi.org/10.5772/18264

    Book  Google Scholar 

  • S. Shamaila, N. Zafar, S. Riaz, R. Sharif, J. Nazir, S. Naseem, Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6(4), 71 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Y.K. Sharma, A. Meena, M. Sahu, A. Dalai, Experimental investigation on mechanical and thermal characteristics of waste sheep wool fiber-filled epoxy composites. Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.157

  • C.V. Stevens, Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications (Wiley, Chichester, UK, 2010)

    Google Scholar 

  • M. Sulyman, J. Namiesnik, A. Gierak, Greener cleaner: sheep wool fiber as renewable sources for oil spill cleanup. Int. J. Adv. Sci. Eng. Technol. 5(2), 77–86 (2017)

    Google Scholar 

  • N. Thomas, D.R. Tivey, N.M. Penno, G. Nattrass, P.I. Hynd, Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep. J. Anim. Sci. 85(9) (2007). https://doi.org/10.2527/jas.2006-541

  • P.K. Thornton, Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. B: Biol. Sci. 365(1554) (2010). https://doi.org/10.1098/rstb.2010.0134

  • T.M. Tiza, S.K. Singh, L. Kumar, M.P. Shettar, S.P. Singh, Assessing the potentials of Bamboo and sheep wool fiber as sustainable construction materials: a review. Mater. Today: Proc. 47 (2021). https://doi.org/10.1016/j.matpr.2021.05.322

  • M. Volf, J. Diviš, F. Havlík, Thermal, moisture and biological behaviour of natural insulating materials. Energy Procedia 78, 1599 (2015)

    Article  Google Scholar 

  • A. Vončina, R. Mihelič, Sheep wool and leather waste as fertilizers in organic production of asparagus (Asparagus officinalis L.). Acta Agric. Slovenica 101(2) (2013). https://doi.org/10.2478/acas-2013-0015

  • H. Zhang, R.J. Sun, X.T. Zhang, Effect of hydrothermal processing on the structure and properties of wool fibers/Efectul prelucrarii hidrotermice asupra structurii si proprietatilor fibrelor de lâna. Industria Textila 65(3), 1033–1039 (2014)

    Google Scholar 

  • Y. Zhang, G. Pang, Y. Zhao, X. Wang, F. Bu, X. Zhao, Pulsed electrohydraulic discharge for wool fiber cleaning. J. Clean. Prod. 112 (2016). https://doi.org/10.1016/j.jclepro.2015.08.023

  • J. Zhao, M.H. Stenzel, Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym. Chem. 9(3) (2018). https://doi.org/10.1039/C7PY01603D

  • V.D. Zheljazkov, Assessment of wool waste and hair waste as soil amendment and nutrient source. J. Environ. Qual. 34(6), 2310 (2005)

    Article  CAS  PubMed  Google Scholar 

  • V.D. Zheljazkov, G.W. Stratton, J. Pincock, S. Butler, E.A. Jeliazkova, N.K. Nedkov, P.D. Gerard, Wool-waste as organic nutrient source for container-grown plants. Waste Manag. 29(7) (2009). https://doi.org/10.1016/j.wasman.2009.03.009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Narendhirakannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vijay, A., Narendhirakannan, R.T. (2024). Science and Technology of Wool Fibers. In: Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C. (eds) Handbook of Biomass. Springer, Singapore. https://doi.org/10.1007/978-981-99-6727-8_51

Download citation

Publish with us

Policies and ethics

Navigation