Biomass from Terrestrial Environments

  • Reference work entry
  • First Online:
Handbook of Biomass
  • 83 Accesses

Abstract

A terrestrial ecosystem depends exclusively on energy from the sun, which supports the growth and metabolism of the residing organisms. Producers or plants are the biomass factories absorbing sunlight, maintaining the trophical levels, and are higher up the food chain with the structural building blocks and energy of life. These autotrophs or producers are the primary producers of the terrestrial biomass constituents, producing a variety of organic molecules such as carbohydrates and lipids, through the process of photosynthesis from CO2, carbon, and mineral nutrients as raw materials. The primary production in an ecosystem is the production of chemical energy by the primary producers. The primary producers are consumed by the heterotrophic organisms, and heterotrophs are the food resources for primary, secondary, and tertiary consumers. In some food chains there is involvement of quaternary consumers too. All these organisms can transfer energy through the food web. Secondary production or the heterotrophic biomass production is also considered part of a small energy flow in the ecosystem. This chapter explains the terrestrial biomass, living organisms producing biomass, the role of a major trophic level of species, and their functions. Also, the net production of energy and the transfer/flow of energy through the trophic levels of ecosystems are discussed in detail. As well as biomass production at various trophic levels, its effect on climate change and the type and role of decomposers in biomass management is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A. Agrawal, K. Gopal, A. Agrawal, K. Gopal, Biomass production in food chain and its role at trophic levels, in Biomonitoring of Water and Waste Water, (Springer, 2013), pp. 59–70

    Chapter  Google Scholar 

  • M. Anas, F. Liao, K.K. Verma, M.A. Sarwar, A. Mahmood, Z.L. Chen, … Y.R. Li, Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 53(1), 1–20 (2020)

    Google Scholar 

  • T.H. Anderson, K.H. Domsch, Soil microbial biomass: the eco-physiological approach. Soil Biol. Biochem. 42(12), 2039–2043 (2010)

    Article  CAS  Google Scholar 

  • M. Antar, D. Lyu, M. Nazari, A. Shah, X. Zhou, D.L. Smith, Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sust. Energ. Rev. 139, 110691 (2021)

    Article  CAS  Google Scholar 

  • A.S.F.D. Araújo, W.J.D. Melo, Soil microbial biomass in organic farming system. Ciênc Rural 40, 2419–2426 (2010)

    Article  Google Scholar 

  • A. Atkinson, V. Siegel, E.A. Pakhomov, M.J. Jessopp, V. Loeb, A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. I Oceanogr. Res. Pap. 56, 727–740 (2009)

    Article  Google Scholar 

  • E.S. Bakker, J.C. Svenning, Trophic rewilding: impact on ecosystems under global change. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170432 (2018)

    Article  Google Scholar 

  • G. Bala et al., Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. U. S. A. 104, 6550–6555 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P. Baldrian, Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 41(2), 109–130 (2017)

    CAS  PubMed  Google Scholar 

  • M. Bartrons, J. Sardans, D. Hoekman, J. Peñuelas, Trophic transfer from aquatic to terrestrial ecosystems: a test of the biogeochemical niche hypothesis. Ecosphere 9(7), 1–11 (2018)

    Google Scholar 

  • M.J. Behrenfeld, J.T. Randerson, C.R. McClain, G.C. Feldman, S.O. Los, C.J. Tucker, P.G. Falkowski, C.B. Field, R. Frouin, W.E. Esaias, D.D. Kolber, N.H. Pollack, Biospheric primary production during an ENSO transition. Science 291(5513), 2594–2597 (2001)

    Article  CAS  PubMed  Google Scholar 

  • J. Berger, P.B. Stacey, L. Bellis, M.P. Johnson, A mammalian predator-prey imbalance: grizzly bear and wolf extinction affect avian neotropical migrants. Ecol. Appl. 11, 947–960 (2001)

    Google Scholar 

  • G. Bonan, Climate Change and Terrestrial Ecosystem Modeling (Cambridge University Press, 2019)

    Book  Google Scholar 

  • J.B. Bradford, W.K. Lauenroth, I.C. Burke, J.M. Paruelo, The influence of climate, soils, weather, and land use on primary production and biomass seasonality in the US great plains. Ecosystems 9, 934–950 (2006)

    Article  Google Scholar 

  • M.J.I. Briones, O. Schmidt, L. Conde, Microbial mediated soil organic matter decomposition and nutrient cycling: a meta-analysis. Forests 9(2), 62 (2018)

    Google Scholar 

  • S.L. Buchmann, G.P. Nabhan, The Forgotten Pollinators (Island Press, Washington, DC, 1996)

    Google Scholar 

  • M.L. Cain, W.D. Bowman, S.D. Hacker, Ecology (Sinauer Associate, Sunderland, 2008)

    Google Scholar 

  • J. Cebrian, Energy flows in ecosystems. Science 349, 1053–1054 (2015)

    Article  CAS  PubMed  Google Scholar 

  • S.K. Chakraborty, P. Sanyal, R. Ray, Ecology and history of wetland research: operating scientific principles of eco-dynamics of wetland ecosystem with special reference to east Kolkata wetland, India, in Wetlands Ecology: Eco-Biological Uniqueness of a Ramsar Site (East Kolkata Wetlands, India), (Springer International Publishing, Cham, 2023), pp. 39–165

    Chapter  Google Scholar 

  • G. Churkina, S.W. Running, Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1, 206–215 (1998)

    Article  Google Scholar 

  • W. Coyle, The future of biofuels: a global perspective. Amber Waves 5, 24–29 (2007)

    Google Scholar 

  • T.W. Crowther, K.E.O. Todd-Brown, C.W. Row, W.R. Wieder, J.C. Carey, M.B. Machmuller, … M.A. Bradford, Quantifying global soil carbon losses in response to warming. Nature 540(7631), 104–108 (2019)

    Google Scholar 

  • P.J. Crutzen et al., N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. Discuss. 7, 11191–11205 (2007)

    Google Scholar 

  • A. Demirbas, The importance of biomass. Energy Sources 26(4), 361–366 (2004)

    Article  Google Scholar 

  • M. Demol, H. Verbeeck, B. Gielen, J. Armston, A. Burt, M. Disney, L. Duncanson, J. Hackenberg, D. Kükenbrink, A. Lau, P. Ploton, A. Sewdien, A. Stovall, S.M. Takoudjou, L. Volkova, C. Weston, V. Wortel, K. Calders, Estimating forest above-ground biomass with terrestrial laser scanning: current status and future directions. Methods Ecol. Evol. 13(8), 1628–1639 (2022)

    Article  Google Scholar 

  • J. Dreyer, D. Hoekman, C. Gratton, Lake-derived midges increase abundance of shoreline terrestrial arthropods. Oikos 121, 252–258 (2012)

    Article  Google Scholar 

  • E.C. Ellis, N. Ramankutty, Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008)

    Article  Google Scholar 

  • A.S. Elrys, Y. Uwiragiye, Y. Zhang, M.K. Abdel-Fattah, Z.X. Chen, H.M. Zhang, … C. Müller, Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nat. Food. 4(1), 109–121 (2023)

    Google Scholar 

  • J. Estes, K. Crooks, R. Holt, Predation and diversity, in Encyclopedia of Biodiversity, ed. by S. Levin, (Academic, San Diego, 2001), pp. 857–878

    Chapter  Google Scholar 

  • W.F. Fagan, R.F. Denno, Stoichiometry of actual vs. potential predator-prey interactions: insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7, 876–883 (2004)

    Article  Google Scholar 

  • P.G. Falkowski, R.T. Barber, V. Smetacek, Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374), 200–206 (1998)

    Article  CAS  PubMed  Google Scholar 

  • J. Farla et al., Energy efficiency developments in the pulp and paper industry – a cross-country comparison using physical production data. Energy Policy 25, 745–758 (1997)

    Article  Google Scholar 

  • C.B. Field, M.J. Behrenfeld, J.T. Randerson, P. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374), 237–240 (1998)

    Article  CAS  PubMed  Google Scholar 

  • C.B. Field et al., Feedbacks of terrestrial ecosystems to climate change. Ann. Rev. Environ. Resour. 32, 1–29 (2007)

    Article  Google Scholar 

  • C. Fløjgaard, P.B.M. Pedersen, C.J. Sandom, J.-C. Svenning, R. Ejrnæs, Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59(1), 18–24 (2022)

    Article  Google Scholar 

  • C.J. Fulton, R.A. Abesamis, C. Berkström, M. Depczynski, N.A. Graham, T.H. Holmes …. S.K. Wilson, Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33(6), 989–999 (2019)

    Google Scholar 

  • P.N. García-Palacios, J. Gross, F.T. Gaitán, Maestre climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl. Acad. Sci. 115(33), 8400 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • C.M. Gough, Terrestrial primary production: fuel for life. Nat. Educ. Knowl. 3(10), 28 (2011)

    Google Scholar 

  • C. Gratton, D. Hoekman, J. Dreyer, R.D. Jackson, Increased duration of aquatic resource pulse alters community and ecosystem responses in a subarctic plant community. Ecology 98, 2860–2872 (2017)

    Article  PubMed  Google Scholar 

  • H. Haber et al., Quantifying and map** the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. U. S. A. 104, 12942–12947 (2007)

    Article  Google Scholar 

  • D.O. Hall, Biomass energy in industrialised countries – a view of the future. For. Ecol. Manag. 91, 17–45 (1997)

    Article  Google Scholar 

  • J.W. Harden et al., Dynamic replacement and loss of soil carbon on eroding cropland. Global Biogeochem. Cycles 13, 885–902 (1999)

    Article  CAS  Google Scholar 

  • M.E. Harmon, Carbon sequestration in forests: addressing the scale question. J. For. 99(4), 24–29 (2001)

    Google Scholar 

  • M.E. Harmon et al., Effects on carbon storage of conversion of old-growth forests to young forests. Science 247, 699–702 (1990)

    Article  CAS  PubMed  Google Scholar 

  • I.A. Hatton, K.S. McCann, J.M. Fryxell, T.J. Davies, M. Smerlak, A.R.E. Sinclair, M. Loreau, The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, 131–144 (2015)

    Google Scholar 

  • S.E. Henke, F.C. Bryant, Effects of coyote removal on the faunal community in western Texas. J. Wildl. Manag. 63, 1066–1081 (1999)

    Article  Google Scholar 

  • J. Hill et al., Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U. S. A. 103, 11206–11210 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • W.R. Horwath, The role of the soil microbial biomass in cycling nutrients, in Microbial Biomass: A Paradigm Shift in Terrestrial Biogeochemistry, (World Scientific, London, 2017), pp. 41–66

    Chapter  Google Scholar 

  • R.A. Houghton, F. Hall, S.J. Goetz, Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeo. 114(G2), 1–13 (2009)

    Google Scholar 

  • F. Hua, L.A. Bruijnzeel, P. Meli, et al., The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839–844 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Y. Huang, Y. Chen, N. Castro-Izaguirre, M. Baruffol, M. Brezzi, A. Lang, Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362(6410), 80 (2018)

    Article  CAS  PubMed  Google Scholar 

  • M. Huang, S. Piao, P. Ciais, J. Peñuelas, X. Wang, T.F. Keenan, … I.A. Janssens, Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3(5), 772–779 (2019)

    Google Scholar 

  • IEA. Renewables (2019). https://www.iea.org/reports/renewables-2019

  • P. Jepson, F. Schepers, W. Helmer, Governing with nature: a European perspective on putting rewilding principles into practice. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170434 (2018)

    Article  Google Scholar 

  • J.N. Klironomos, J. Berg, S. Collins, J.P. Grime, Bridging the gap between plant and microbial ecology. J. Ecol. 103(5), 1005–1012 (2015)

    Google Scholar 

  • T. Le Toan, S. Quegan, M.W.J. Davidson, H. Balzter, P. Paillou, S. Plummer, K. Papathanassiou, F. Rocca, S. Saatchi, H. Shugart, L. Ulander, The BIOMASS mission: map** global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 115(11), 2850–2860 (2011)

    Article  Google Scholar 

  • R.L. Lindeman, The trophic-dynamic aspect of ecology. Ecology 23, 399–418 (1942)

    Article  Google Scholar 

  • X. Liu, F. Pei, Y. Wen, X. Li, S. Wang, C. Wu, … Z. Liu, Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 10(1), 5558 (2019)

    Google Scholar 

  • M. Makkonen, M.P. Berg, I.T. Handa, S. Hättenschwiler, J. van Ruijven, P.M. van Bodegom, Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol. Lett. 15(9), 1033–1041 (2012)

    Article  PubMed  Google Scholar 

  • W.F. Morris, J. Ehrlén, J.P. Dahlgren, A.K. Loomis, A.M. Louthan, Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness. Proc. Natl. Acad. Sci. 117(2), 1107–1112 (2020)

    Article  CAS  PubMed  Google Scholar 

  • J.C. Mosley, J.G. Mundinger, History and status of wild ungulate populations on the Northern Yellowstone Range. Rangelands 40, 189–201 (2018)

    Article  Google Scholar 

  • B. Myneni, J. Dong, C.J. Tucker, R.K. Kaufmann, P.E. Kauppi, J. Liski, … L. Zhou, A large carbon sink in the woody biomass of Northern forests. Proc. Natl. Acad. Sci. 98(26), 14784–14789 (2001)

    Google Scholar 

  • L. Oksanen, T. Oksanen, The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000)

    Article  PubMed  Google Scholar 

  • S. Ouyang, W. **ang, X. Wang, W. **ao, L. Chen, S. Li, H. Sun, X. Deng, D.I. Forrester, L. Zeng, P. Lei, X. Lei, M. Gou, C. Peng, A. Hector, Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 107(5), 2266–2277 (2019)

    Article  Google Scholar 

  • S.L. Pimm, J.H. Lawton, J.E. Cohen, Food web patterns and their consequences. Nature 350, 669–674 (1991)

    Article  Google Scholar 

  • G.A. Polis, D.R. Strong, Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996)

    Article  Google Scholar 

  • E. Preisser, Trophic structure, in Encyclopedia of Ecology, (Academic, 2008), pp. 3608–3616

    Chapter  Google Scholar 

  • S. Raghu et al., Ecology: adding biofuels to the invasive species fire? Science 313, 1742 (2006)

    Article  CAS  PubMed  Google Scholar 

  • M.O. Raimi, I. Abiola, O. Alima, D.E. Omini, Exploring how human activities disturb the balance of biogeochemical cycles: evidence from the carbon, nitrogen and hydrologic cycles. Nitrogen and hydrologic cycles. SSRN (2021)

    Google Scholar 

  • S. Ratcliffe, Wirt, T. Jucker, F. van der Plas, M. Scherer-Lorenzen, K. Verheyen, E. Allan, R. Benavides, H. Bruelheide, B. Ohse, A. Paquette, E. Ampoorter, C.C. Bastias, J. Bauhus, D. Bonal, O. Bouriaud, F. Bussotti, M. Carnol, B. Castagneyrol, E. Chećko, S.M. Dawud, H.D. Wandeler, T. Domisch, L. Finér, M. Fischer, M. Fotelli, A. Gessler, A. Granier, C. Grossiord, V. Guyot, J. Haase, S. Hättenschwiler, H. Jactel, B. Jaroszewicz, F.X. Joly, S. Kambach, S. Kolb, J. Koricheva, M. Liebersgesell, H. Milligan, S. Müller, B. Muys, D. Nguyen, C. Nock, M. Pollastrini, O. Purschke, Radoglou, K. Raulund-Rasmussen, F. Roger, P. Ruiz-Benito, R. Seidl, F. Selvi, I. Seiferling, J. Stenlid, F. Valladares, L. Vesterdal, L. Baeten, R. Bardgett, Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20(11), 1414–1426 (2017)

    Article  PubMed  Google Scholar 

  • M.R. Raupach et al., Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 104, 10288–10293 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R. Righelato, D.V. Spracklen, Environment: carbon mitigation by biofuels or by saving and restoring forests. Science 317, 902 (2007)

    Article  CAS  PubMed  Google Scholar 

  • L.M. Rosalino, S. Rosa, M. Santos-Reis, The role of carnivores as Mediterranean seed dispersers. Ann. Zool. Fenn. 47, 195–205 (2010)

    Article  Google Scholar 

  • K.A. Rubeena, A. Nefla, K.M. Aarif, S.S. AlMaarofi, D.R. Gijjappu, O.R. Reshi, Alterations in hydrological variables and substrate qualities and its impacts on a critical conservation reserve in the southwest coast of India. Mar. Pollut. Bull. 186, 114463 (2023)

    Article  CAS  PubMed  Google Scholar 

  • J.S. Sánchez-Oliver, J.M. Rey Benayas, L.M. Carrascal, Differential effects of local habitat and landscape characteristics on bird communities in Mediterranean afforestations motivated by the EU Common Agrarian Policy. Eur. J. Wildl. Res. 60, 135–143 (2014)

    Article  Google Scholar 

  • M.G. Sanderson, Biomass of termites and their emissions of methane and carbon dioxide: a global database. Global Biogeochem. Cycles 10, 543–557 (1996)

    Article  CAS  Google Scholar 

  • J. Sardans, R. Alonso, J. Carnicer, M. Fernández-Martínez, M.G. Vivanco, J. Peñuelas, Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspect. Plant Ecol. Evol. Syst. 18, 52–69 (2016)

    Article  Google Scholar 

  • M. Schaeffer et al., CO2 and albedo climate impacts of extratropical carbon and biomass plantations. Global Biogeochem. Cycles 20 (2006). https://doi.org/10.1029/2005GB002581

  • J.P. Schimel, M.N. Weintraub, The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35(4), 549–563 (2003)

    Article  CAS  Google Scholar 

  • T.R. Schultz, In search of ant ancestors. Proc. Natl. Acad. Sci. U. S. A. 97, 14028–14029 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.B. Shurin, D.S. Gruner, H. Hillebrand, All wet dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B 273, 1–9 (2006)

    Article  PubMed  Google Scholar 

  • T.M. Smith, R.L. Smith, Elements of ecology, 7th edn. (Pearson Benjamin Cummings, San Francisco, 2009)

    Google Scholar 

  • R.W. Sterner, J.J. Elser, P. Vitousek, Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002)

    Google Scholar 

  • M.J. Swift, O.W. Heal, J.M. Anderson, Decomposition in Terrestrial Ecosystems, vol 5 (University of California Press, 1979)

    Book  Google Scholar 

  • J. Terborgh, The big things that run the world – a sequel to E. O. Wilson. Conserv. Biol. 2, 402–403 (1988)

    Article  Google Scholar 

  • D. Timothy, Schowalter, Insect Ecology-An ecosystem approach (Fourth Edition) Kindle Edition (2016)

    Google Scholar 

  • V.F. Trotsiuk, M. Hartig, F. Cailleret, D.I. Babst, A. Forrester, N. Baltensweiler, H. Buchmann, A. Bugmann, M. Gessler, F. Gharun, A. Minunno, B. Rigling, J. Rohner, E. Stillhard, P. Thürig, M. Waldner, W. Ferretti, E.M. Schaub, Assessing the response of forest productivity to climate extremes in Switzerland using model–data fusion. Glob. Chang. Biol. 26(4), 2463–2476 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • A. Tursi, A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6(2), 962 (2019)

    Article  CAS  Google Scholar 

  • D.H. Wall, M.A. Bradford, M.G. St. John, J.A. Trofymow, V. Behan-Pelletier, D.E. Bignell, … J.M. Dangerfield, Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Chang. Biol. 21(11), 4350–4360 (2015)

    Google Scholar 

  • J. Wang, C. Yu, G. Fu, Warming reconstructs the elevation distributions of aboveground net primary production, plant species and phylogenetic diversity in alpine grasslands. Ecol. Indic. 133, 108355 (2021)

    Article  Google Scholar 

  • S.R. Weiskopf, M.A. Rubenstein, L.G. Crozier, S. Gaichas, R. Griffis, J.E. Halofsky, … K.P. Whyte, Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782 (2020)

    Google Scholar 

  • W.B. Whitman, D.C. Coleman, W.J. Wiebe, Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U. S. A. 95, 6578–6583 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.T. Williams, N. Maree, P. Taylor, S.R. Belmain, M. Keith, L.H. Swanepoel, Predation by small mammalian carnivores in rural agro-ecosystems: an undervalued ecosystem service? Ecosyst. Serv. 30, 362–371 (2018)

    Article  Google Scholar 

  • E.O. Wilson, The encyclopedia of life. Trends Ecol. Evol. 18, 77–80 (2003)

    Article  Google Scholar 

  • D.S. Yadav, B. Jaiswal, M. Gautam, M. Agrawal, Soil acidification and its impact on plants, in Plant Responses to Soil Pollution, (Springer, Singapore, 2020), pp. 1–26

    Google Scholar 

  • J. Yan, X. Ye, Y. Song, T. Ren, C. Wang, X. Li, … J. Lu, Sufficient potassium improves inorganic phosphate-limited photosynthesis in Brassica napus by enhancing metabolic phosphorus fractions and Rubisco activity. Plant J. 113(2), 416–429 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nisha, P., John, N., Rubeena, K.A., Thangavel, M. (2024). Biomass from Terrestrial Environments. In: Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C. (eds) Handbook of Biomass. Springer, Singapore. https://doi.org/10.1007/978-981-99-6727-8_3

Download citation

Publish with us

Policies and ethics

Navigation