Synbiotics in Oral Drug Delivery

  • Reference work entry
  • First Online:
Synbiotics in Human Health: Biology to Drug Delivery
  • 102 Accesses

Abstract

Gut microbiota constitutes a variety of microorganism like bacteria, fungi, virus, rickettsiae, etc. Any imbalance in gut microbiota termed as dysbiosis leads to a variety of diseases or disorders namely cancer, diabetes mellitus, inflammatory bowel disease, neurodegenerative disease, and many more. Hence, to revert this imbalance in gut microbiota is necessary to combat the abovementioned diseases or disorders. Synbiotics can be administered to cause balance in gut microbiota which enables the suppression of various kinds of disorders or diseases caused by dysbiosis. But the oral administration of synbiotics suffers from the problem of reduced viability of probiotic strains during their transit through gastrointestinal tract due to gastric pH of stomach, various intestinal enzymes, and bile salts. Moreover, the strict processing and storage conditions also harm the viability of probiotics. Hence, it is required to develop the advanced techniques to address the above constraints’ associates with synbiotics. Encapsulation of synbiotics in form of microcapsules, microparticles, and nanoparticles has emerged as a viable option to improve the viability of microbial strains in synbiotics. However various nanotechnology-based formulations are yet to be explored. This chapter summarizes the potential of synbiotics in various diseases, oral delivery of synbiotics, various novel approaches for oral delivery of synbiotics along with commercial synbiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836

    Article  CAS  PubMed  Google Scholar 

  2. Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, **ao C et al (2022) Microbiota in health and diseases. Signal Transduct Target Ther 7(1):1–28

    Google Scholar 

  3. Dangi P, Chaudhary N, Chaudhary V, Virdi AS, Kajla P, Khanna P et al (2023) Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol 388:110083

    Article  CAS  PubMed  Google Scholar 

  4. Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N (2019) Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11(7):1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olas B (2020) Probiotics, prebiotics and synbiotics – a promising strategy in prevention and treatment of cardiovascular diseases? Int J Mol Sci 21(24):9737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoo JY, Kim SS (2016) Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients 8(3):173

    Article  PubMed  PubMed Central  Google Scholar 

  7. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10(Suppl 1):S49–S66

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N et al (2013) Health benefits of probiotics: a review. ISRN Nutr 2013:481651

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mo R, Zhang X, Yang Y (2019) Effect of probiotics on lipid profiles in hypercholesterolaemic adults: a meta-analysis of randomized controlled trials. Med Clin (Barc) 152(12):473–481

    Article  PubMed  Google Scholar 

  10. Markowiak-Kopeć P, Śliżewska K (2020) The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4):1107

    Article  PubMed  PubMed Central  Google Scholar 

  11. Linares DM, GĂłmez C, Renes E, Fresno JM, Tornadijo ME, Ross RP et al (2017) Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 8:846

    Article  PubMed  PubMed Central  Google Scholar 

  12. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8(3):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. La Fata G, Rastall RA, Lacroix C, Harmsen HJM, Mohajeri MH, Weber P et al (2017) Recent development of prebiotic research – statement from an expert workshop. Nutrients 9(12):1376

    Article  PubMed  PubMed Central  Google Scholar 

  15. CerdĂł T, GarcĂ­a-Santos JA, BermĂşdez MG, Campoy C (2019) The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 11(3):635

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 52(12):7577–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mounir M, Ibijbijen A, Farih K, Rabetafika HN, Razafindralambo HL (2022) Synbiotics and their antioxidant properties, mechanisms, and benefits on human and animal health: a narrative review. Biomol Ther 12(10):1443

    CAS  Google Scholar 

  18. Skalkam ML, Wiese M, Nielsen DS, van Zanten G (2016) In vitro screening and evaluation of synbiotics. In Watson RR, Preedy VR (eds) Probiotics, prebiotics, and synbiotics [Internet]. Academic Press; [cited 2023 Dec 5]. pp. 477–486

    Google Scholar 

  19. Kvakova M, Bertková I, Štofilová J, Savidge T (2021) Co-encapsulated synbiotics and immobilized probiotics in human health and gut microbiota modulation. Foods 10:1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vernocchi P, Del Chierico F, Putignani L (2020) Gut microbiota metabolism and interaction with food components. Int J Mol Sci 21(10):3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26. https://doi.org/10.3402/mehd.v26.26191

  23. Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL (2020) The role of the gastrointestinal mucus system in intestinal homeostasis: implications for neurological disorders. Front Cell Infect Microbiol 10:248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khursheed R, Gulati M, Wadhwa S, Vishwas S, Sharma DS, Corrie L et al (2022) Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem Biol Interact 368:110223

    Article  CAS  PubMed  Google Scholar 

  25. Pickard JM, Zeng MY, Caruso R, Núñez G (2017) Gut microbiota: role in pathogen colonization, immune responses and inflammatory disease. Immunol Rev 279(1):70–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK (2022) Probiotics, prebiotics and synbiotics: safe options for next-generation therapeutics. Appl Microbiol Biotechnol 106(2):505–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markowiak P, ĹšliĹĽewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh V, Muthuramalingam K, Kim YM, Park S, Kim SH, Lee J et al (2021) Synbiotic supplementation with prebiotic Schizophyllum commune derived β-(1,3/1,6)-glucan and probiotic concoction benefits gut microbiota and its associated metabolic activities. Appl Biol Chem 64(1):7

    Article  CAS  Google Scholar 

  29. Fujimori S, Gudis K, Mitsui K, Seo T, Yonezawa M, Tanaka S et al (2009) A randomized controlled trial on the efficacy of synbiotic versus probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis. Nutrition 25(5):520–525

    Article  PubMed  Google Scholar 

  30. Scott AJ, Merrifield CA, Younes JA, Pekelharing EP (2018) Pre-, pro- and synbiotics in cancer prevention and treatment – a review of basic and clinical research. Ecancermedicalscience 12:869

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiang H, Cai M, Shen B, Wang Q, Zhang T, Zhou X (2022) Synbiotics and gut microbiota: new perspectives in the treatment of type 2 diabetes mellitus. Foods 11(16):2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geier MS, Butler RN, Howarth GS (2006) Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Ther 5(10):1265–1269

    Article  CAS  PubMed  Google Scholar 

  33. Gallaher DD, Khil J (1999) The effect of synbiotics on colon carcinogenesis in rats. J Nutr 129(7 Suppl):1483S–1487S

    Article  CAS  PubMed  Google Scholar 

  34. Saito Y, Hinoi T, Adachi T, Miguchi M, Niitsu H, Kochi M et al (2019) Synbiotics suppress colitis-induced tumorigenesis in a colon-specific cancer mouse model. PLoS One 14(6):e0216393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rufino MN, da Costa AL, Jorge EN, Paiano VF, Camparoto ML, Keller R et al (2022) Synbiotics improve clinical indicators of ulcerative colitis: systematic review with meta-analysis. Nutr Rev 80(2):157–164

    Article  PubMed  Google Scholar 

  36. Wong WY, Chan BD, Leung TW, Chen M, Tai WCS (2022) Beneficial and anti-inflammatory effects of formulated prebiotics, probiotics, and synbiotics in normal and acute colitis mice. J Funct Foods 88:104871

    Article  CAS  Google Scholar 

  37. Shinde T, Perera AP, Vemuri R, Gondalia SV, Karpe AV, Beale DJ et al (2019) Synbiotic supplementation containing whole plant sugar cane fibre and probiotic spores potentiates protective synergistic effects in mouse model of IBD. Nutrients 11(4):818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS (2015) Opportunities for nano-formulations in type 2 diabetes mellitus treatments. Curr Pharm Biotechnol 16(10):853–870

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Yang J, Qiu X, Wen Q, Liu M, Zhou D et al (2021) Probiotics, pre-biotics and synbiotics in the treatment of pre-diabetes: a systematic review of randomized controlled trials. Front Public Health [Internet] [cited 2023 Apr 11] 9. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2021.645035

  40. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morshedi M, Saghafi-Asl M, Hosseinifard ES (2020) The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. J Transl Med 18:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roselino MN, Pauly-Silveira ND, Cavallini DC, Celiberto LS, Pinto RA, Vendramini RC et al (2012) A potential synbiotic product improves the lipid profile of diabetic rats. Lipids Health Dis 11:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mofid V, Izadi A, Mojtahedi SY, Khedmat L (2020) Therapeutic and nutritional effects of synbiotic yogurts in children and adults: a clinical review. Probiotics Antimicrob Proteins 12(3):851–859

    Article  CAS  PubMed  Google Scholar 

  44. Sarfraz F, Farooq U, Shafi A, Hayat Z, Akram K, Rehman H (2019) Hypolipidaemic effects of synbiotic yoghurt in rabbits. Int J Dairy Technol 72(4):545–550

    Article  CAS  Google Scholar 

  45. Liong MT, Dunshea FR, Shah NP (2007) Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high- and low-fat diets. Br J Nutr 98(4):736–744

    Article  CAS  PubMed  Google Scholar 

  46. Kumar G, Khar RK, Virmani T, Jogpal V, Virmani R (2018) Comparative evaluation of fast dissolving tablet of atorvastatin calcium using natural and synthetic super disintegrating agents. Res J Pharm Technol 11(11):5001

    Article  Google Scholar 

  47. Torp AM, Bahl MI, Boisen A, Licht TR (2022) Optimizing oral delivery of next generation probiotics. Trends Food Sci Technol 119:101–109

    Article  CAS  Google Scholar 

  48. Luo Y, De Souza C, Ramachandran M, Wang S, Yi H, Ma Z et al (2022) Precise oral delivery systems for probiotics: a review. J Control Release 352:371–384

    Article  CAS  PubMed  Google Scholar 

  49. Naissinger da Silva M, Tagliapietra BL, Flores VdoA, Pereira dos Santos Richards NS (2021) In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr Res Food Sci 4:320–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71(6):3060–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matouskova P, Hoova J, Rysavka P, Marova I (2021) Stress effect of food matrices on viability of probiotic cells during model digestion. Microorganisms 9(8):1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I et al (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24

    Article  CAS  PubMed  Google Scholar 

  53. Grenier D (1994) Effect of proteolytic enzymes on the lysis and growth of oral bacteria. Oral Microbiol Immunol 9(4):224–228

    Article  CAS  PubMed  Google Scholar 

  54. Suvorov A (2013) Gut microbiota, probiotics, and human health. Biosci Microbiota Food Health 32(3):81–91

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ainali NM, Xanthopoulou E, Michailidou G, Zamboulis A, Bikiaris DN (2020) Microencapsulation of fluticasone propionate and salmeterol xinafoate in modified chitosan microparticles for release optimization. Molecules 25(17):3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shori AB (2017) Microencapsulation improved probiotics survival during gastric transit. HAYATI J Biosci 24(1):1–5

    Article  Google Scholar 

  57. Muthukumarasamy P, Allan-Wojtas P, Holley R (2006) Stability of Lactobacillus reuteri in different types of microcapsules. J Food Sci 71:M20–M24

    Article  CAS  Google Scholar 

  58. Sumanti D, Hanidah II, Kayaputri I, Rialita T, Sukarminah E, Zakaria R (2019) Microencapsulation of Lactobacillus acidophilus with freeze drying method and application to synbiotic beverage of banana corm stone. Int J Adv Sci Eng Inf Technol 9:532

    Article  Google Scholar 

  59. Misra S, Pandey P, Dalbhagat CG, Mishra HN (2022) Emerging technologies and coating materials for improved probiotication in food products: a review. Food Bioprocess Technol 15(5):998–1039

    Article  Google Scholar 

  60. Vivek K, Mishra S, Pradhan RC, Nagarajan M, Kumar PK, Singh SS et al (2023) A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Appl Food Res 3(1):100248

    Article  CAS  Google Scholar 

  61. Virmani T, Kumar G, Virmani R, Sharma A, Pathak K. (2023) Xanthan gum-based drug delivery systems for respiratory diseases. In Dureja H, Adams J, Löbenberg R, Andreoli Pinto T de J, Dua K (eds) Natural polymeric materials based drug delivery systems in lung diseases [Internet]. Singapore: Springer Nature; [cited 2023 Dec 5]. pp. 279–295

    Google Scholar 

  62. Iravani S, Korbekandi H, Mirmohammadi SV (2015) Technology and potential applications of probiotic encapsulation in fermented milk products. J Food Sci Technol 52(8):4679–4696

    Article  CAS  PubMed  Google Scholar 

  63. Mortazavian AM, Sohrabvandi S (2006) Probiotics and food probiotic products; based on dairy probiotic products. Eta Publication, Tehran, pp 54–155

    Google Scholar 

  64. Nami Y, Lornezhad G, Kiani A, Abdullah N, Haghshenas B (2020) Alginate-Persian Gum-Prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. LWT 124:109190

    Article  CAS  Google Scholar 

  65. Rangel Guimarães R, Vendramini A, Santos A, Leite S, Miguel M (2013) Development of probiotic beads similar to fish eggs. J Funct Foods 5:968–973

    Article  Google Scholar 

  66. Moumita S, Goderska K, Johnson EM, Das B, Indira D, Yadav R et al (2017) Evaluation of the viability of free and encapsulated lactic acid bacteria using in-vitro gastro intestinal model and survivability studies of synbiotic microcapsules in dry food matrix during storage. Lebensm-Wiss Technol 77:460–467

    Article  CAS  Google Scholar 

  67. Kumar G, Virmani T, Pathak K, Alhalmi A (2022) A revolutionary blueprint for mitigation of hypertension via nanoemulsion. Biomed Res Int 2022:e4109874

    Article  Google Scholar 

  68. Virmani T, Kumar G, Pathak K (2022) Non-aqueous nanoemulsions: an innovative lipid-based drug carrier [Internet]. In: Advancements in controlled drug delivery systems. IGI Global [cited 2022 Apr 19], pp 134–158. Available from: https://www.igi-global.com/chapter/non-aqueous-nanoemulsions/www.igi-global.com/chapter/non-aqueous-nanoemulsions/300404

  69. Singh S, Virmani T, Kohli K (2020) Nanoemulsion system for improvement of raspberry ketone oral bioavailability. IGJPS 10(01):33–42

    Article  Google Scholar 

  70. Kumar G, Virmani T, Sharma A, Pathak K (2023) Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers. Pharmaceutics 15(3):889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumar G, Virmani T, Pathak K, Kamaly OA, Saleh A (2022) Central composite design implemented azilsartan medoxomil loaded nanoemulsion to improve its aqueous solubility and intestinal permeability: in vitro and ex vivo evaluation. Pharmaceuticals 15(11):1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vaishanavi S, Preetha R (2021) Soy protein incorporated nanoemulsion for enhanced stability of probiotic (Lactobacillus delbrueckii subsp. bulgaricus) and its characterization. Mater Today Proc 40:S148–S153

    Article  CAS  Google Scholar 

  73. Krithika B, Preetha R (2019) Formulation of protein-based inulin incorporated synbiotic nanoemulsion for enhanced stability of probiotic. Mater Res Express 6(11):114003

    Article  Google Scholar 

  74. Virmani T, Kumar G, Virmani R, Sharma A, Pathak K (2022) Nanocarrier-based approaches to combat chronic obstructive pulmonary disease. Nanomedicine (Lond) 17(24):1833–1854

    Google Scholar 

  75. Dudefoi W, Villares A, Peyron S, Moreau C, Ropers MH, Gontard N et al (2017) Nanoscience and nanotechnologies for biobased materials, packaging and food applications: new opportunities and concerns. Innovative Food Sci Emerg Technol 46:107–121

    Google Scholar 

  76. He X, Deng H, Hwang H, min. (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27(1):1–21

    Google Scholar 

  77. Das G, Patra JK, Paramithiotis S, Shin HS (2019) The sustainability challenge of food and environmental nanotechnology: current status and imminent perceptions. IJERPH 16(23):4848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jampilek J, Kos J, Kralova K (2019) Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials 9(2):296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alkushi AG, Abdelfattah-Hassan A, Eldoumani H, Elazab ST, Mohamed SAM, Metwally AS et al (2022) Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Sci Rep 12(1):5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Doktorovová S, Kovačević AB, Garcia ML, Souto EB (2016) Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 108:235–252

    Article  PubMed  Google Scholar 

  81. Severino P, Pinho SC, Souto EB, Santana MHA (2011) Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces 86(1):125–130

    Article  CAS  PubMed  Google Scholar 

  82. Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E et al (2020) An updated overview on nanonutraceuticals: focus on nanoprebiotics and nanoprobiotics. Int J Mol Sci 21(7):2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Silva KCG, Cezarino EC, Michelon M, Sato ACK (2018) Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT 89:503–509

    Article  CAS  Google Scholar 

  84. Fratianni F, Cardinale F, Russo I, Iuliano C, Tremonte P, Coppola R et al (2014) Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. J Microencapsul 31(3):299–305

    Article  CAS  PubMed  Google Scholar 

  85. Raddatz GC, de Souza da Fonseca B, Poletto G, Jacob-Lopes E, Cichoski AJ, Muller EI et al (2020) Influence of the prebiotics hi-maize, inulin and rice bran on the viability of pectin microparticles containing Lactobacillus acidophilus LA-5 obtained by internal gelation/emulsification. Powder Technol 362:409–415

    Article  CAS  Google Scholar 

  86. Ergi̇nkaya Z, Konuray G, Harmanci M, Kesen G, Mete N (2019) Antibacterial effects of microencapsulated probiotic and synbiotics. Çukurova J Agric Food Sci 34(1):27–36

    Google Scholar 

  87. Atia A, Gomaa A, Fliss I, Beyssac E, Garrait G, Subirade M (2016) A prebiotic matrix for encapsulation of probiotics: physicochemical and microbiological study. J Microencapsul 33(1):89–101

    Article  CAS  PubMed  Google Scholar 

  88. Nunes GL, Etchepare MdeA, Cichoski AJ, Zepka LQ, Jacob Lopes E, Barin JS et al (2018) Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT 89:128–133

    Article  CAS  Google Scholar 

  89. Rosolen MD, Bordini FW, de Oliveira PD, Conceição FR, Pohndorf RS, Fiorentini ÂM et al (2019) Symbiotic microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. LWT 115:108411

    Article  CAS  Google Scholar 

  90. Upadhyay R, Dass JFP (2021) Physicochemical analysis, microbial survivability, and shelf life study of spray-dried synbiotic guava juice powder. J Food Process Preserv 45(2):n/a–n/a

    Google Scholar 

  91. Petreska Ivanovska T, Tozi L, Grozdanov A, Hadjieva J, Popovski E, Stafilov T et al (2014) From optimization of synbiotic microparticles prepared by spray-drying to development of new functional carrot juice. Chem Ind Chem Eng Q 20:549–564

    Article  Google Scholar 

  92. Ansari F, Pourjafar H, Bahadori MB, Pimentel T (2020) Effect of microencapsulation on the development of antioxidant activity and viability of Lactobacillus acidophilus LA5 in whey drink during fermentation. Biointerface Res Appl Chem 11:9762–9771

    Article  Google Scholar 

  93. Hedayati Rad F, Khanjari N, Sharifan A (2021) Synbiotic cocoa cream produced via incorporation of microencapsulated Bifidobacterium animalis subsp. lactis and inulin: physicochemical, rheological, and sensory properties. J Agric Sci Technol 23(1):97–106

    Google Scholar 

  94. Nejati R, Gheisari H, Hosseinzadeh S, Amin H (2011) Viability of encapsulated Bifidobacterium lactis (BB-12) in synbiotic UF cheese and it’s survival under in vitro simulated gastrointestinal conditions. Int J Probiotics Prebiotics 6:197–204

    Google Scholar 

  95. Rajam R, Kumar SB, Prabhasankar P, Anandharamakrishnan C (2015) Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. J Food Sci Technol 52(7):4029–4041

    Article  CAS  PubMed  Google Scholar 

  96. Li H, Zhang T, Li C, Zheng S, Li H, Yu J (2020) Development of a microencapsulated synbiotic product and its application in yoghurt. LWT 122:109033

    Article  CAS  Google Scholar 

  97. Qaziyani SD, Pourfarzad A, Gheibi S, Nasiraie LR (2019) Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of synbiotic chewing gum: study with univariate and multivariate analyses. Heliyon 5(7):e02144

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fazilah NF, Hamidon NH, Ariff AB, Khayat ME, Wasoh H, Halim M (2019) Microencapsulation of Lactococcus lactis Gh1 with gum Arabic and Synsepalum dulcificum via spray drying for potential inclusion in functional yogurt. Molecules 24(7):1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kaur K, Rath G (2019) Formulation and evaluation of UV protective synbiotic skin care topical formulation. J Cosmet Laser Ther 21(6):332–342

    Article  PubMed  Google Scholar 

  100. Hong L, Kim WS, Lee SM, Kang SK, Choi YJ, Cho CS (2019) Pullulan nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum through the induction of mild stress in probiotics. Front Microbiol [Internet] [cited 2023 Apr 10] 10. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00142

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, G., Virmani, T., Sharma, A., Virmani, R., Pathak, K. (2024). Synbiotics in Oral Drug Delivery. In: Dua, K. (eds) Synbiotics in Human Health: Biology to Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-99-5575-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5575-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5574-9

  • Online ISBN: 978-981-99-5575-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation