Ionic Liquid as a Sustainable Reaction Medium for Diels-Alder Reaction

  • Reference work entry
  • First Online:
Encyclopedia of Ionic Liquids

Introduction

Diels–Alder reaction is named after Otto Diels and Kurt Alder, two German chemists who studied the synthetic and theoretical aspects of this reaction in great detail. Their efforts were recognized for the outstanding contribution to the development of synthesis of simple to complex natural products and were rewarded with the 1950 Nobel Prize. The Diels–Alder reaction has proven to be of great synthetic value, forming a key step in the construction of compounds through carbon–carbon, carbon–heteroatom, and heteroatom–heteroatom bond containing six-membered rings. Both inter- and intramolecular Diels–Alder reactions have found wide application in organic synthesis. In many cases the reactions have been reported to take place easily at ambient or slightly elevated temperatures; reactions which are sluggish or which involve thermally unstable reactants or lead to unstable products can often be accelerated by catalysts or by conducting the reaction under high-pressure...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 748.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 962.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolaou KC, Sorensen EJ (1996) Classics in total synthesis. VCH, Weinheim

    Google Scholar 

  2. Fleming I (1976) Frontier orbitals and organic chemical reactions, 1st edn. Wiley, London

    Google Scholar 

  3. Gill GB, Willis MR (1974) Pericyclic reactions. Chapman and Hall Ltd, London

    Book  Google Scholar 

  4. (a) Merchand AP, Lehr RE (1977) Pericyclic reactions, vol I. Academic, London; (b) Grossman RB (1999) The art of writing reasonable reaction mechanisms. Springer, New York

    Google Scholar 

  5. Berson JA, Mueller WA (1961) Solvent effects on the stereoselectivity of Diels–Alder reaction. Tetrahedron Lett 4:131–135

    Article  Google Scholar 

  6. Rideout DC, Breslow R (1980) Hydrophobic acceleration of Diels–Alder reactions. J Am Chem Soc 102:7817–7818

    Article  Google Scholar 

  7. Cativiela C, Jose IG, Gil J, Martínez RM, Mayoral JA, Salvatella L, Jose SU, Mainar AM, Michael HA (1997) Solvent effects on Diels–Alder reactions. The use of aqueous mixtures of fluorinated alcohols and the study of reactions of acrylonitrile. J Chem Soc Perkin Trans 2:653–660

    Article  Google Scholar 

  8. Peter W, Welton T (2008) Ionic liquids in synthesis, vol I. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  9. Chiappe C, Pieraccini DJ (2005) Ionic liquids: solvent properties and organic reactivity. Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  10. Castner EW, Wishart JF (2010) Spotlight on ionic liquids. J Chem Phys 132:120901-1–120901-9

    Article  Google Scholar 

  11. (a) Zhang Q, Jeanne MS (2014) Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev 114:10527–10574; (b) Dong K, **aomin L, Dong H, Zhang X, Zhang S (2017) Multiscale studies on ionic liquids. Chem Rev 117(10):6636–6695

    Google Scholar 

  12. Caminiti R, Gontrani L (2014) The structure of ionic liquids. Springer International Publishing Switzerland, Switzerland

    Google Scholar 

  13. Mark BS, Scurto AM (2017) Ionic liquids: current state and future directions. J Am Chem Soc 1250; Washington, DC

    Google Scholar 

  14. (a) Lee CW (1999) Diels–Alder reactions in chloroaluminate ionic liquids: acceleration and selectivity enhancement. Tetrahedron Lett 40:2461–2464; (b) Kumar A, Pawar SS (2004) Converting exo-selective Diels–Alder reaction to endo-selective in chloroloaluminate ILs. J Org Chem 69:1419–1420

    Google Scholar 

  15. Otto S, Bertoncin F, Engberts JBFN (1996) Lewis acid catalysis of a Diels–Alder reaction in water. J Am Chem Soc 118:7702–7707

    Article  CAS  Google Scholar 

  16. Brooks NJ, Franca C, Doherty CM, Andrew D, Hill AJ, Hunt PA, Richard PM, Mauri M, Mele A, Roberto S, Villar-Garcia IJ, Cameron CW, Welton T (2017) Linking the structures, free volumes, and properties of ionic liquid mixtures. Chem Sci 8:6359–6374

    Article  CAS  Google Scholar 

  17. Howarth J, Keith H, Fayane D, Paul M (1997) Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels–Alder reaction. Tetrahedron Lett 38(17):3097–3100

    Article  CAS  Google Scholar 

  18. Wioletta O, Katarzyna D, Dawid S (2013) Densities and viscosities of imidazolium and pyridinium chloroaluminate ionic liquids. J Mol Liq 177:85–93

    Article  Google Scholar 

  19. Chiappe C, Malvaldi M, Pomelli CS (2010) The solvent effect on the Diels–Alder reaction in ILs: multiparameter linear solvation energy relationships and theoretical analysis. Green Chem 12:1330–1339

    Article  CAS  Google Scholar 

  20. Silvero G, Arevalo MA, Jose LB, Martın A, Jose LJ, Lopez I (2005) An in-depth look at the effect of Lewis acid catalysts on Diels–Alder cycloadditions in ILs. Tetrahedron 61:7105–7111

    Article  CAS  Google Scholar 

  21. Meracz I, Taeboem O (2003) Asymmetric Diels–Alder reactions in ILs. Tetrahedron Lett 44:6465–6468

    Article  CAS  Google Scholar 

  22. Earle MJ, Paul BM, Seddon KR (1999) Diels–Alder reactions in ILs A safe recyclable alternative to lithium perchlorate–diethyl ether mixtures. Green Chem:23–25

    Google Scholar 

  23. Fischer T, Sethi A, Welton T, Woolf J (1999) Diets–Alder reactions in room-temperature ILs. Tetrahedron Lett 40:793–796

    Article  CAS  Google Scholar 

  24. Ying X, Malhotra SV (2004) Diels–Alder reactions in pyridinium based ILs. Tetrahedron Lett 45:8339–8342

    Article  Google Scholar 

  25. Khupse ND, Kumar A (2011) The cosolvent-directed Diels–Alder reaction in ILs. J Phys Chem A 115:10211–10217

    Article  CAS  Google Scholar 

  26. (a) Tiwari S, Kumar A (2012) Viscosity dependence of intra- and intermolecular Diels−Alder reactions. J Phys Chem A 116:1191–1198; (b) Tiwari S, Khupse N, Kumar A (2008) Intramolecular Diels–Alder reaction in ILs: effect of ion-specific solvent friction. J Org Chem 73:9075–9083

    Google Scholar 

  27. Mahrwald R (2013) In: Dalko PI (ed) Comprehensive enantioselective organocatalysis. Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  28. Antonio DN, Bortolini O, Loredana M, Angelo G, Beatrice R, Giovanni S (2011) A sustainable procedure for highly enantioselective organocatalyzed Diels–Alder cycloadditions in homogeneous ionic liquid/water phase. Tetrahedron Lett 52:1415–1417

    Article  Google Scholar 

  29. Huihong L, Xueqin A, Jianguo Y, **ngfu S (2012) Diels–Alder reaction in microemulsions with ionic liquid. J Phys Org Chem 25:1210–1216

    Article  Google Scholar 

  30. Zulfiqar F, Tomoya K (2000) One-pot aza-Diels–Alder reactions in ILs. Green Chem 2:137–139

    Article  CAS  Google Scholar 

  31. (a) Yadav JS, Reddy BVS, Reddy JSS, Srinivasarao R (2003) Aza-Diels–Alder reactions in ILs: a facile synthesis of pyrano- and furanoquinolines. Tetrahedron 59:1599–1604; (b) Yadav JS, Reddy BVS, Chetia L, Srinivasulu G, Kunwar AC (2005) Ionic liquid accelerated intramolecular hetero-Diels–Alder reactions: a protocol for the synthesis of octahydroacridines. Tetrahedron Lett 46:1039–1044

    Google Scholar 

  32. Zheng X, Qian Y, Wang Y (2010) Direct asymmetric aza Diels–Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid. Catal Commun 11:567–570

    Article  CAS  Google Scholar 

  33. Olivier NVB, Audrey A, Giang V (2009) Synthesis of novel chiral imidazolium-based ILs derived from isosorbide and their applications in asymmetric aza Diels–Alder reaction. Tetrahedron 65:2260–2265

    Article  Google Scholar 

  34. Parvulescu VI, Christopher H (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  35. Fan F, Yong-Chua T, Teck-Peng L (2006) Catalytic enantioselective Diels–Alder reaction in ionic liquid via a recyclable chiral In(III) complex. Org Lett 8(26):5999–6001

    Article  Google Scholar 

  36. Yeom CE, Kim HW, Yong JS, Kim BM (2007) Chiral bis(oxazoline)–copper complex catalyzed Diels–Alder reaction in ILs: remarkable reactivity and selectivity enhancement, and efficient recycling of the catalyst. Tetrahedron Lett 48:9035–9039

    Article  CAS  Google Scholar 

  37. Kumar A, Pawar SS (2007) ILs as powerful solvent media for improving catalytic performance of silyl borate catalyst to promote Diels–Alder reactions. J Organomet Chem 72:8111–8114

    Article  CAS  Google Scholar 

  38. Eycken EV, Appukkuttan P, Wim DB, Wim D, Doris D, Kappe CO (2002) High-speed microwave-promoted hetero-Diels–Alder reactions of 2(1H) -pyrazinones in ionic liquid doped solvents. J Organomet Chem 67:7904–7907

    Article  Google Scholar 

  39. Chen IH, Young J, Shuchun JY (2004) Recyclable organotungsten Lewis acid and microwave assisted Diels–Alder reactions in water and in ILs. Tetrahedron 60:11903–11909

    Article  CAS  Google Scholar 

  40. Lopez I, Silvero G, Arevalo MJ, Babiano R, Palacios JC, Bravo JL (2007) Enhanced Diels–Alder reactions: on the role of mineral catalysts and microwave irradiation in ILs as recyclable media. Tetrahedron 63:2901–2906

    Article  CAS  Google Scholar 

  41. Ganesan VK, Annamalai R (2016) Sustainable Diels–Alder syntheses in imidazolium ILs. Synth Commun 46(6):483–496

    Article  Google Scholar 

  42. (a) Acevedo O (2014) Simulating chemical reactions in ILs using QM/MM methodology. J Phys Chem A 118:11653–11666; (b) Acevedo O, Jorgensen WL, Evanseck JD (2007) Elucidation of rate variations for a Diels–Alder reaction in ILs from QM/MM simulations. J Chem Theory Comput 3:132–138

    Google Scholar 

  43. Sun H, Zhang D, Ma C, Liu C (2007) Theoretical study on the Diels–Alder reaction of cyclopentadiene with methacrolein catalyzed by diethylimidazolium cation. Int J Quantum Chem 107:1875–1885

    Article  CAS  Google Scholar 

  44. Bini R, Chiappe C, Mestre VL, Pomelli CS, Welton T (2009) A theoretical study of the solvent effect on Diels–Alder reaction in room temperature ILs using a supermolecular approach. Theor Chem Accounts 123:347–352

    Article  CAS  Google Scholar 

  45. Rosa CD, Ormachea C, Kneeteman MN, Adama C, Mancini PME (2011) Diels–Alder reactions of N-tosylpirroles developed in protic ILs. Theoretical studies using DFT methods. Tetrahedron Lett 52:6754–6757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. R. Gupta or A. R. Kapdi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, G.R., Girase, T.R., Kapdi, A.R. (2022). Ionic Liquid as a Sustainable Reaction Medium for Diels-Alder Reaction. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-33-4221-7_27

Download citation

Publish with us

Policies and ethics

Navigation