Microalgal Biomass: Introduction and Production Methods

  • Living reference work entry
  • First Online:
Handbook of Biomass
  • 58 Accesses

Abstract

Microalgae are a potential feedstock used for the generation of wide range of metabolic byproducts and value-added products. Compared to other plants that flourish on land, microalgae develop quickly with minimum amounts of nutrients. Besides, they are widely employed in wastewater treatment, carbon sequestration, and biomass production that make the cultivation of microalgae environment friendly. Due to their quick generation period and ease of manufacturing, microalgae are currently receiving massive interest as promising bio factories. Despite various possibilities, the production of microalgae on a large scale is fraught with difficulties, including choosing the right algal strain and biomass-producing techniques, develo** practical harvesting methods, and recovering metabolites. Advancements in growing methods and the optimization of growth parameters are required to increase the productivity and profitability of microalgae farming. This chapter describes the diverse methods used to produce, harvest, and treat microalgal biomass after harvest in order to extract metabolites, as well as the current difficulties and potential future applications of microalgal technology industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Z. Amini Khoeyi, J. Seyfabadi, Z. Ramezanpour, Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac. Int. 20, 41–49 (2012)

    Article  CAS  Google Scholar 

  • J.R. Banu, P.S. Kavitha, M. Guvanesekaran, G. Kumar, Microalgae based biorefinery promoting circular bioeconomy-techno economic and life- cycle analysis. Bioresour. Technol. 302, 122822 (2020)

    Article  Google Scholar 

  • L. Barsanti, P. Coltelli, V. Evangelista, A.M. Frassanito, V. Passarelli, N. Vesentini, P. Gualtieri, Oddities and curiosities in the algal world, in Algal Toxins: Nature, Occurrence, Effect and Detection (Springer Netherlands, Dordrecht, 2008), pp. 353–391

    Google Scholar 

  • E.H. Belarbi, E. Molina, Y. Chisti, RETRACTED: a process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym. Microb. Technol. 35, 951 (2000)

    CAS  Google Scholar 

  • A. Ben-Amotz, M. Avron, The biotechnology of mass culturing Dunaliella for products of commercial interest. Algal Cyanobacterial Biotechnol. 7(2), 90–114 (1989)

    Google Scholar 

  • M. Benedetti, V. Vecchi, S. Barera, L. Dall’Osto, Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb. Cell Factories 17, 173 (2018). https://doi.org/10.1186/s12934-018-1019-3

    Article  CAS  Google Scholar 

  • R. Bermejo, E.M. Talavera, J.M. Alvarez-Pez, Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruentum: semipreparative high-performance liquid chromatographic separation and characterization of its subunits. J. Chromatogr. A 917(1–2), 135–145 (2001)

    Article  CAS  PubMed  Google Scholar 

  • F. Berner, K. Heimann, M. Sheehan, Microalgal biofilms for biomass production. J. Appl. Phycol. 27, 1793–1804 (2015)

    Article  CAS  Google Scholar 

  • S.K. Bhatia, S. Mehariya, R.K. Bhatia, M. Kumar, A. Pugazhendhi, M.K. Awasthi, … Y.H. Yang, Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci. Total Environ. 751, 141599 (2021)

    Google Scholar 

  • D. Bilanovic, G. Shelef, A. Sukenik, Flocculation of microalgae with cationic polymers – effects of medium salinity. Biomass 17(1), 65–76 (1988)

    Article  CAS  Google Scholar 

  • E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959)

    Article  CAS  PubMed  Google Scholar 

  • T.R. Brown, I. Dogaris, A. Meiser, L. Walmsley, M. Welch, G. Philippidis, Development of a scalable cultivation system for sustainable production of algal biofuels, in Proceedings of the 23rd European Biomass Conference & Exhibition, Vienna, Austria (2015, June), pp. 1–4

    Google Scholar 

  • P. Cheng, J. Huang, X. Song, T. Yao, J. Jiang, C. Zhou, … R. Ruan, Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production. Bioresour. Technol. 349, 126888 (2022)

    Google Scholar 

  • Y. Chisti, Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007)

    Article  CAS  PubMed  Google Scholar 

  • D.H. Cho, R. Ramanan, J. Heo, J. Lee, B.H. Kim, H.M. Oh, H.S. Kim, Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Bioresour. Technol. 175, 578–585 (2015)

    Article  CAS  PubMed  Google Scholar 

  • F.J. Choix, L.E. De-Bashan, Y. Bashan, Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzym. Microb. Technol. 51, 294–299 (2012)

    Article  CAS  Google Scholar 

  • L.E. De-Bashan, Y. Bashan, Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl. Environ. Microbiol. 74(21), 6797–6802 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L.E. De-Bashan, Y. Bashan, M. Moreno, V.K. Lebsky, J.J. Bustillos, Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can. J. Microbiol. 48(6), 514–521 (2002)

    Article  CAS  PubMed  Google Scholar 

  • M.P. Devi, S.V. Mohan, CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour. Technol. 112, 116–123 (2012)

    Article  PubMed  Google Scholar 

  • F. Fasaei, J.H. Bitter, P.M. Slegers, A.J.B. Van Boxtel, Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 31, 347–362 (2018)

    Article  Google Scholar 

  • J. Folch, M. Lees, G.H. Sloane Stanley, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)

    Article  CAS  PubMed  Google Scholar 

  • M. Ghazvini, M. Kavosi, R. Sharma, M. Kim, A review on mechanical-based microalgae harvesting methods for biofuel production. Biomass Bioenergy 158, 106348 (2022)

    Article  CAS  Google Scholar 

  • T.A. Gomes, C.M. Zanette, M.R. Spier, An overview of cell disruption methods for intracellular biomolecules recovery. Prep. Biochem. Biotechnol. 50(7), 635–654 (2020)

    Article  CAS  PubMed  Google Scholar 

  • L.M. González-González, S. Astals, S. Pratt, P.D. Jensen, P.M. Schenk, Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour. Technol. Rep. 7, 100214 (2019)

    Article  Google Scholar 

  • E.M. Grima, A.R. Medina, A.G. Giménez, J.A. Sánchez Pérez, F.G. Camacho, J.L. García Sánchez, Comparison between extraction of lipids and fatty acids from microalgal biomass. J. Am. Oil Chem. Soc. 71(9), 955–959 (1994)

    Article  Google Scholar 

  • E.M. Grima, A.R. Medina, A.G. Giménez, M.I. González, Gram-scale purification of eicosapentaenoic acid (EPA, 20: 5n-3) from wet Phaeodactylum tricornutum UTEX 640 biomass. J. Appl. Phycol. 8, 359–367 (1996)

    Article  CAS  Google Scholar 

  • A. Hallmann, Algal Biotechnology- Green Cell-Factories on the Rise. Curr. Biotechnol. 4, 389–415 (2015)

    Google Scholar 

  • M. Heasman, J. Diemar, W. O’connor, T. Sushames, L. Foulkes, Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs–a summary. Aquac. Res. 31(8–9), 637–659 (2000)

    Google Scholar 

  • S.H. Ho, C.Y. Chen, J.S. Chang, Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244–252 (2012)

    Article  CAS  PubMed  Google Scholar 

  • J.Q. Jiang, N.J.D. Graham, C. Harward, Comparison of polyferric sulphate with other coagulants for the removal of algae and algae-derived organic matter. Water Sci. Technol. 27(11), 221–230 (1993)

    Article  CAS  Google Scholar 

  • A. Juneja, R.M. Ceballos, G.S. Murthy, Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9), 4607–4638 (2013)

    Article  Google Scholar 

  • V.M. Kaya, G. Picard, Stability of chitosan gel as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for tertiary treatment of wastewater. Bioresour. Technol. 56(2–3), 147–155 (1996)

    Article  CAS  Google Scholar 

  • N.F.M. Khairuddin, A. Idris, L.W. Hock, Harvesting Nannochloropsis sp. using PES/MWCNT/LiBr membrane with good antifouling properties. Sep. Purif. Technol. 212, 1–11 (2019)

    Article  CAS  Google Scholar 

  • M.I. Khan, J.H. Shin, J.D. Kim, The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories 17(1), 1–21 (2018)

    Article  Google Scholar 

  • B.H. Kim, R. Ramanan, D.H. Cho, H.M. Oh, H.S. Kim, Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69, 95–105 (2014)

    Article  CAS  Google Scholar 

  • Z.H. Kim, H. Park, C.G. Lee, Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J. Microbiol. Biotechnol. 26(6), 1098–1102 (2016)

    Article  CAS  PubMed  Google Scholar 

  • I. KrzemiÅ„ska, B. Pawlik-SkowroÅ„ska, M. TrzciÅ„ska, J. Tys, Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst. Eng. 37, 735–741 (2014)

    Article  PubMed  Google Scholar 

  • K. Lee, M.L. Eisterhold, F. Rindi, S. Palanisami, P.K. Nam, Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Biol. Med. 5(2), 333–339 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • S.Y. Lee, J.M. Cho, Y.K. Chang, Y.K. Oh, Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresour. Technol. 244, 1317–1328 (2017)

    Article  CAS  PubMed  Google Scholar 

  • N. Lee, S.R. Ko, C.Y. Ahn, H.M. Oh, Optimized co-production of lipids and carotenoids from Ettlia sp. by regulating stress conditions. Bioresour. Technol. 258, 234–239 (2018)

    Article  CAS  PubMed  Google Scholar 

  • C. Lee, M.S. Jeon, J.Y. Kim, S.H. Lee, D.G. Kim, S.W. Roh, Y.E. Choi, Effects of an auxin-producing symbiotic bacterium on cell growth of the microalga Haematococcus pluvialis: elevation of cell density and prolongation of exponential stage. Algal Res. 41, 101547 (2019)

    Article  Google Scholar 

  • F. Leliaert, D.R. Smith, H. Moreau, M.D. Herron, H. Verbruggen, C.F. Delwiche, O. De Clerck, Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci. 31(1), 1–46 (2012)

    Article  Google Scholar 

  • E.P. Lincoln, Resource recovery with microalgae. Arch. Hydrobiol. 20, 25–34 (1985)

    Google Scholar 

  • L.M. Lubián, Concentrating cultured marine microalgae with chitosan. Aquac. Eng. 8(4), 257–265 (1989)

    Article  Google Scholar 

  • S. Maity, N. Mallick, Trends and advances in sustainable bioethanol production by marine microalgae: a critical review. J. Clean. Prod. 345, 131153 (2022)

    Article  CAS  Google Scholar 

  • S.D. Manjare, K. Dhingra, Supercritical fluids in separation and purification: a review. Mater. Sci. Energy Technol. 2(3), 463–484 (2019)

    Google Scholar 

  • A. Mantzorou, F. Ververidis, Microalgal biofilms: a further step over current microalgal cultivation techniques. Sci. Total Environ. 651, 3187–3201 (2019)

    Article  CAS  PubMed  Google Scholar 

  • I.A. Matter, V.K.H. Bui, M. Jung, J.Y. Seo, Y.E. Kim, Y.C. Lee, Y.K. Oh, Flocculation harvesting techniques for microalgae: a review. Appl. Sci. 9(15), 3069 (2019). https://doi.org/10.3390/app9153069

    Article  CAS  Google Scholar 

  • M.A. McCausland, M.R. Braun, S.M. Barrett, J.A. Diemar, M.P. Heasman, Evaluation of live microalgae and microbial pastes as supplementary food for Pacific oysters. Aquaculture 174(3–4), 323–342 (1999)

    Article  Google Scholar 

  • J.R. McMillan, I.A. Watson, M. Ali, W. Jaafar, Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Appl. Energy 103, 128–134 (2013)

    Article  Google Scholar 

  • M.M. Mendes-Pinto, M.F.J. Raposo, J. Bowen, A.J. Young, R. Morais, Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J. Appl. Phycol. 13, 19–24 (2001)

    Article  Google Scholar 

  • F.H. Mohn, Experiences and strategies in the recovery of biomass from mass cultures of microalgae, in Algae Biomass: Production and Use, ed. by G. Shelef, C.J. Soeder (National Council for Research and Development/Gesellschaft fur Strahlen-und Umweltforschung (GSF), Jerusalem/Munich, 1980)

    Google Scholar 

  • M.M.A. Nur, A.G. Buma, Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste Biomass Valorization 10, 2079–2097 (2019)

    Article  CAS  Google Scholar 

  • J. Park, B.S. Park, P. Wang, S.K. Patidar, J.H. Kim, S.H. Kim, M.S. Han, Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic interaction. Front. Plant Sci. 8, 289 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • S.B. Patwardhan, S. Pandit, D. Ghosh, D.W. Dhar, S. Banerjee, S. Joshi, … K. Kumar Kesari, A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biomass Convers. Biorefin. 1–18 (2022). https://doi.org/10.1007/s13399-022-02783-9

  • R.R. Pradhan, R.R. Pradhan, S. Das, B. Dubey, A. Dutta, Bioenergy combined with carbon capture potential by microalgae at flue gas-based carbon sequestration plant of NALCO as accelerated carbon sink, in Carbon Utilization: Applications for the Energy Industry (Springer, Singapore, 2017), pp. 231–244

    Google Scholar 

  • L.D.A. Purba, F.S. Othman, A. Yuzir, S.E. Mohamad, K. Iwamoto, N. Abdullah, … J. Hermana, Enhanced cultivation and lipid production of isolated microalgae strains using municipal wastewater. Environ. Technol. Innov. 27, 102444 (2022)

    Google Scholar 

  • G. Quijano, J.S. Arcila, G. Buitrón, Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol. Adv. 35(6), 772–781 (2017)

    Article  CAS  PubMed  Google Scholar 

  • C.A. Rabinovitch-Deere, J.W. Oliver, G.M. Rodriguez, S. Atsumi, Synthetic biology and metabolic engineering approaches to produce biofuels. Chem. Rev. 113(7), 4611–4632 (2013)

    Article  CAS  PubMed  Google Scholar 

  • G. Randrianarison, M.A. Ashraf, Microalgae: a potential plant for energy production. Geol. Ecol. Landsc. 1(2), 104–120 (2017)

    Article  Google Scholar 

  • R. Ranjith Kumar, P. Hanumantha Rao, M. Arumugam, Lipid extraction methods from microalgae: a comprehensive review. Front. Energy Res. 2, 61 (2015)

    Article  Google Scholar 

  • M. Rehman, S. Kesharvani, G. Dwivedi, K.G. Suneja, Impact of cultivation conditions on microalgae biomass productivity and lipid content. Mater. Today Proc. 56, 282–290 (2022)

    Article  CAS  Google Scholar 

  • A. Richmond, Microalgae of economic potential, in CRC Handbook of Microalgal Mass Culture (CRC Press, Boca Raton, 1986), pp. 83–84

    Google Scholar 

  • S.D. Rios, E. Clavero, J. Salvadó, X. Farriol, C. Torras, Dynamic microfiltration in microalgae harvesting for biodiesel production. Ind. Eng. Chem. Res. 50(4), 2455–2460 (2011)

    Article  CAS  Google Scholar 

  • J.M. Roux, H. Lamotte, J.L. Achard, An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia 112, 680–688 (2017)

    Article  Google Scholar 

  • J. Ruiz, R.H. Wijffels, M. Dominguez, M.J. Barbosa, Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. Algal Res. 64, 102698 (2022)

    Article  Google Scholar 

  • E.S. Salama, J.H. Hwang, M.M. El-Dalatony, M.B. Kurade, A.N. Kabra, R.A. Abou-Shanab, … B.H. Jeon, Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: a review. Bioresour. Technol. 258, 365–375 (2018)

    Google Scholar 

  • S.V. Sandhya, K.K. Vijayan, Symbiotic association among marine microalgae and bacterial flora: a study with special reference to commercially important Isochrysis galbana culture. J. Appl. Phycol. 31, 2259–2266 (2019)

    Article  CAS  Google Scholar 

  • G.G. Satpati, R. Pal, Microalgae-biomass to biodiesel: a review. J. Algal Biomass Util. 9(4), 11–37 (2018)

    Google Scholar 

  • P.J. Schnurr, O. Molenda, E. Edwards, G.S. Espie, D.G. Allen, Improved biomass productivity in algal biofilms through synergistic interactions between photon flux density and carbon dioxide concentration. Bioresour. Technol. 219, 72–79 (2016)

    Article  CAS  PubMed  Google Scholar 

  • R.M. Schuurmans, P. van Alphen, J.M. Schuurmans, H.C. Matthijs, K.J. Hellingwerf, Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS One 10(9), e0139061 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • S. Shivhare, A.K. Mishra, V.K. Sethi, A.K.S. Bhadoria, Growth rate, biochemical and biomass analysis of scenedesmus obliquus algae in Shahpura Lake Bhopal (MP). Int. J. Pharm. Chem. Sci. 3, 477–482 (2014)

    Google Scholar 

  • S.P. Singh, P. Singh, Effect of temperature and light on the growth of algae species: a review. Renew. Sust. Energ. Rev. 50, 431–444 (2015)

    Article  CAS  Google Scholar 

  • M.W. Tenney, W.F. Echelberger Jr., R.G. Schuessler, J.L. Pavoni, Algal flocculation with synthetic organic polyelectrolytes. Appl. Microbiol. 18(6), 965–971 (1969)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • T. Toyama, M. Kasuya, T. Hanaoka, N. Kobayashi, Y. Tanaka, D. Inoue, … K. Mori, Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnol. Biofuels 11(1), 1–12 (2018)

    Google Scholar 

  • M.V. Vieira, L.M. Pastrana, P. Fuciños, Microalgae encapsulation systems for food, pharmaceutical and cosmetics applications. Mar. Drugs 18(12), 644 (2020). https://doi.org/10.3390/md18120644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Wang, S. Chen, W. Zhou, W. Yuan, D. Wang, Algal cell lysis by bacteria: a review and comparison to conventional methods. Algal Res. 46, 101794 (2020)

    Article  Google Scholar 

  • Z. Wu, Z. Cui, T. Li, S. Qin, B. He, N. Han, J. Li, Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process. Appl. Surf. Sci. 419, 429–438 (2017)

    Article  CAS  Google Scholar 

  • X. Zeng, M.K. Danquah, X.D. Chen, Y. Lu, Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sust. Energ. Rev. 15(6), 3252–3260 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Anju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Joy, S.R., Anju, T.R. (2023). Microalgal Biomass: Introduction and Production Methods. In: Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C. (eds) Handbook of Biomass. Springer, Singapore. https://doi.org/10.1007/978-981-19-6772-6_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6772-6_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6772-6

  • Online ISBN: 978-981-19-6772-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation