Metabolomics and Cytoplasmic Genomics of Allium

  • Living reference work entry
  • First Online:
Compendium of Crop Genome Designing for Nutraceuticals
  • 38 Accesses

Abstract

Allium is the biggest genus of petaloid monocotyledons, with more than 750 species widely distributed in a range of climatic conditions worldwide, especially in the Northern Hemisphere. Allium comprises commercially significant food crops, including onions, garlic, leeks, and chives, as well as species with medicinal qualities. Bulb onions rank second only after tomatoes in terms of global production, which indicates the importance of Allium crops and the need for develo** new Allium crop varieties with beneficial agronomical traits. Recently, there has been considerable interest in investigating the genetic resources of Allim crops and their wild relatives for improving Allium breeding and possible future genetic manipulation. This chapter provides a comprehensive review of major Allium crops and their wild relatives from scientific and horticultural perspectives. This chapter broadly covers the unique resources for Allium genetics and breeding, including the recent development of cytoplasmic male sterility, inbred lines, and wild species. We also discuss and summarize the recent developments in Allium genome sequencing, including novel tools for large genome sequencing, the chloroplast genome, mitochondrial genomes, and the nuclear genome. Furthermore, we provide a brief overview of the linkage, cytogenetic, and physical map** in various Allium crops. Finally, we provide a special focus on Allium metabolome and transcriptome analysis as important approaches for understanding Allium stress responses. Our book chapter provides recent developments in Allium genomics and metabolome dynamics, which open the possibility of develo** novel Allium crop cultivars with enhanced nutritional value and stress tolerance under current climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelrahman M (2020) Allium functional genomic development for future climatic changes. In: Kole C (ed) Genomic designing of climate-smart vegetable crops. Springer, Cham, pp 345–358

    Chapter  Google Scholar 

  • Abdelrahman M, Hirata S, Ito S-I, Yamauchi N, Shigyo M (2014) Compartmentation and localization of bioactive metabolites in different organs of Allium roylei. Biosci Biotechnol Biochem 78:1112–1122

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Sawada Y, Nakabayashi R, Sato S, Hirakawa H et al (2015) Integrating transcriptome and target metabolome variability in doubled haploids of Allium cepa for abiotic stress protection. Mol Breed 35:195

    Article  Google Scholar 

  • Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito S-I, Tran LS (2016) Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci 246:128–138

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Suzumura N, Mitoma M, Matsuo S, Ikeuchi T, Mori M et al (2017a) Comparative de novo transcriptome profiles in Asparagus officinalis and A. kiusianus during the early stage of Phomopsis asparagi infection. Sci Rep 7:2608

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdelrahman M, El-Sayed M, Sato S, Hirakawa H, Ito SI et al (2017b) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines. PLoS One 12:0181784

    Article  Google Scholar 

  • Abdelrahman M, Mahmood HYAH, El-Sayed M, Tanaka S, Tran LS (2017c) Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity. Plant Physiol Biochem 116:167–173

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LP (2018a) Genome editing using CRISPR/Cas9–targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol Biochem 131:31–36

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran LP (2018b) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 41:1972–1983

    CAS  PubMed  Google Scholar 

  • Abdelrahman M, Hirata S, Sawada Y, Hirai MY, Sato S et al (2019) Widely targeted metabolome and transcriptome landscapes of Allium fistulosum–A. cepa chromosome addition lines revealed a flavonoid hot spoton chromosome 5A. Sci Rep 9:3541

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdelrahman M, Nakabayashi R, Mori T, Ikeuchi T, Mori M, Murakami K et al (2020a) Comparative metabolome and transcriptome analyses of susceptible Asparagus officinalis and resistant wild A. kiusianusrevealinsights into stem blight. Plant Cell Physiol 61:1464–1476

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Ariyanti NA, Sawada Y, Tsuji F, Hirata S, Hang TTM et al (2020b) Metabolome-based discrimination analysis of shallot landraces and bulb onion cultivars associated with differences in the amino acid and flavonoid profiles. Molecules 25:5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelrahman M, Nishiyama R, Tran CD, Kusano M, Nakabayashi R et al (2021a) Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis. Proc Natl Acad Sci U S A 118(48):e2105021118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelrahman M, Hirata S, Mukae T, Yamada T, Sawada Y et al (2021b) Comprehensive metabolite profiling in genetic resources of garlic (Allium sativum L.) collected from different geographical regions. Molecules 26:1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abiala MA, Abdelrahman M, Burritt DJ, Tran LP (2018) Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad Dev 29:3812–3822

    Article  Google Scholar 

  • Alan AR, Toprak FC, Kaska A (2016) Production and evaluation of gynogenic leek (Allium ampeloprasum L.) plants. Plant Cell Tissue Organ Cult 125:249–259

    Article  CAS  Google Scholar 

  • Albini SM, Jones GH (1990) Synaptonemal complex spreading in Allium cepa and Allium fistulosum. III. The F1 hybrid. Genome 33:854–866

    Article  Google Scholar 

  • Al-Sheikh Hussain L (1977) Cytology and species relationships of Allium section Codonoprasum (Rchb.) Endl. PhD thesis, University of Sheffield

    Google Scholar 

  • Ariyanti NA, Hoa VQ, Khrustaleva LI, Hirata S, Abdelrahman M et al (2015) Production and characterization of alien chromosome addition lines in Allium fistulosum carrying extra chromosomes of Allium roylei using molecular and cytogenetic analyses. Euphytica 206:343–355

    Article  Google Scholar 

  • Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot 83:687–695

    Article  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses – 807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  • Bhasi A, Simon P, Senalik D, Kumar B, Manikandan V et al (2010) RoBuST: an integrated resource of genomics information for plants in the root and bulb crop families Apiaceae and Alliaceae. BMC Plant Biol 10:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohanec B (2002) Double-haploid onion. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI, Wallingford, pp 145–157

    Chapter  Google Scholar 

  • Bohanec B, JakÅ¡e M (1999) Variations in gynogenic response among long-day onion (Allium cepa L.) accessions. Plant Cell Rep 18:737–742

    Article  CAS  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(418):705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho KS, Yun BK, Yoon YH, Hong SY, Mekapogu M, Kim KH, Yang TJ (2015) Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F esculentum). PLoS One 10:e0125332

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Kim S, Lee J (2020) Construction of an onion (Allium cepa L) genetic linkage map using genoty**-by-sequencing analysis with a reference gene set and identification of QTLs controlling anthocyanin synthesis and content. Plan Theory 9:616

    CAS  Google Scholar 

  • De Melo PE (2003) The root systems of onion and Allium fistulosum in the context of organic farming: a breeding approach. PhD thesis, Wageningen University

    Google Scholar 

  • Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG et al (2019) Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun 10:754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Duangjit J, Welsh K, Wise ML, Bohanec B, Havey MJ (2014) Genetic analyses of anthocyanin concentrations and intensity of red bulb color among segregating haploid progenies of onion. Mol Breed 34:75–85

    Article  CAS  Google Scholar 

  • Egea LA, Mérida-García R, Kilian A, Hernandez P, Dorado G (2017) Assessment of genetic diversity and structure of large garlic (Allium sativum) germplasm bank, by diversity arrays technology genoty**-by-sequencing platform (DArTseq). Front Genet 8:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Emsweller SL, Jones HA (1935) An interspecific hybrid in Allium. Hilgardia 9:265–273

    Article  Google Scholar 

  • Fayos O, Vallés MP, Garcés-Claver A, Mallor C, Castillo AM (2015) Doubled haploid production from Spanish onion (Allium cepa L) germplasm: embryogenesis induction, plant regeneration and chromosome doubling. Front Plant Sci 6:384

    Article  PubMed  PubMed Central  Google Scholar 

  • Finkers R, van Kaauwen M, Ament K, Burger-Meijer K, Egging R, Huits H et al (2021) Insights from the first genome assembly of onion (Allium cepa). bioRvix 0305434149

    Google Scholar 

  • Fritsch RM, Friesen N (2002) Evolution, domestication, and taxonomy. In: H. D. Rabinowitch & L. Currah (Eds.), Allium Crop Science: Recent Advances, pp. 5–30. CABI Publishing, Walling-ford, Oxon OX10 8DE, UK.

    Google Scholar 

  • Fritsch RM, Blattner FR, Gurushidze M (2010) New classification of Allium L.subgMelanocrommyum (Webb & Berthel) Rouy (Alliaceae) based on molecular and morphological characters. Phyton 49:145e220

    Google Scholar 

  • Fujito S, Akyol TY, Mukae T, Wako T, Yamashita K-I, Tsukazaki H, Hirakawa H et al (2021) Construction of a high-density linkage map and graphical representation of the arrangement of transcriptome-based unigene markers on the chromosomes of onion, Allium cepa L. BMC Genomics 22:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galsurker O, Doron-Faigenboim A, Teper-Bamnolker P, Daus A, Lers A, Eshel D (2018) Differential response to heat stress in outer and inner onion bulb scales. J Exp Bot 69:4047–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galván Vivero GA (2009) Resistance to Fusarium basal rot and response to arbuscular mycorrhizal fungi in Allium. PhD thesis, Wageningen University

    Google Scholar 

  • Galván Vivero GA, Kuyper TW, Burger K, Paul Keizer LC, Hoekstra RF, Kik C, Scholten QE (2011) Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi. Theor Appl Genet 122:947–960

    Article  Google Scholar 

  • Gokce A, McCallum J, Sato Y, Havey M (2002) Molecular tagging of the Ms locus in onion. Am Soc Hortic Sci 127:576–582

    Article  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govaerts R, Kington S, Friesen N, Fritsch RM, Snijman DA et al (2005–2020) World checklist of Amaryllidaceae. https://apps.kew.org/wcsp/. Accessed 30 Oct 2022

  • Han J, Thamilarasan SK, Natarajan S, Park J-I, Chung M-Y, Nou I-S (2016) De Novo assembly and transcriptome analysis of bulb onion (Allium cepa L) during cold acclimation using contrasting genotypes. PLoS One 11:e0161987

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanelt P (1990) Taxonomy, evolution, and history. In: H. D. Rabinowitch & J. L. Brewster (Eds.), Onions and Allied Crops. Vol. I, pp. 1–26. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Hang TTM, Shigyo M, Yaguchi S, Yamauchi N, Tashiro Y (2004) Effect of single alien chromosome from shallot (Allium cepa L. Aggregatum group) on carbohydrate production in leaf blade of bunching onion (A. fistulosum L.). Genes Genet Syst 79:345–350

    Google Scholar 

  • Hao M, Zhang L, Ning S, Huang L, Yuan Z et al (2020) The resurgence of introgression breeding, as exemplified in wheat improvement. Front Plant Sci 11:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Havey MJ (2002) Genome organization in Allium 59–79. Rabinowitch HD, Currah L Allium crop science: Recent advances CABI Wallingford, UK

    Google Scholar 

  • Hu H, Hu Q, Al-Shehbaz IA, Luo X, Zeng T, Guo X, Liu J (2016) Species delimitation and interspecific relationships of the genus Orychophragmus (Brassicaceae) inferred from whole chloroplast genomes. Front Plant Sci 7:1826

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui L, Chen W, Pan M, Li W, He L, Wang J, Miao M, Yang H (2020) Characterization of the complete mitochondrial genome of yellow stripe mutant in onion (Allium cepa L). Mitochondrial DNA B 5:2986–2987

    Article  Google Scholar 

  • Huo YM, Gao LM, Liu BJ, Yang YY, Kong SP, Sun YQ, Yang YH, Wu X (2019) Complete chloroplast genome sequences of four Allium species: comparative and phylogenetic analyses. Sci Rep 9:12250

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyde PT, Earle ED, Mutschler MA (2012) Doubled haploid onion (Allium cepa L) lines and their impact on hybrid performance. Hortic Sci 47:1690–1695

    Google Scholar 

  • Ibrahim AM, Kayat FB, Susanto D, Kashiani P, Arifullah M (2016) Haploid induction in spring onion (Allium fistulosum L) via gynogenesis. Biotechnology 15:10–16

    Article  CAS  Google Scholar 

  • JakÅ¡e J, Meyer JDF, Suzuki G, McCallum J, Cheung F, Town CD, Havey MJ (2008) Pilot sequencing of onion genomic DNA reveals fragmented transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Mol Genet Genom 280:287–292

    Article  Google Scholar 

  • Jo J, Purushotham PM, Han K, Lee H-R, Nah G, Kang B-C (2017) Development of a genetic map for onion (Allium cepa L) using reference-free genoty**-by-sequencing and SNP assays. Front Plant Sci 8:1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaska A, Toprak FC, Alan AR (2013) Gynogenesis induction in leek (Allium ampeloprasum L) breeding materials. Curr Opin Biotechnol 24S:S42–S47

    Article  Google Scholar 

  • Kato N, Reynolds D, Brown ML, Boisdore M, Fujikawa Y, Morales A, Meisel LA (2008) Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. Plant Methods 4:9–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller J (1990) Culture of unpollinated ovules, ovaries, and flower buds in some species of the genus Allium and haploid induction via gynogenesis in onion (Allium cepa L). Euphytica 47:241–247

    Article  Google Scholar 

  • Kelly LJ, Leitch IJ (2011) Exploring giant plant genomes with next-generation sequencing technology. Chromosom Res 19:939–953

    Article  CAS  Google Scholar 

  • Khan PSSV, Vijayalakshmi G, Raja MM, Naik ML, Germanà MA, Terry RG (2020) Doubled haploid production in onion (Allium cepa L): from gynogenesis to chromosome doubling. Plant Cell Tissue Organ Cult 142:1–22

    Article  CAS  Google Scholar 

  • Khar A, Jakse J, Havey M (2008) Segregations for onion-bulb colors reveal that red is controlled by at least three loci. Am Soc Hortic Sci 133:42–47

    Article  CAS  Google Scholar 

  • Khosa JS, Lee R, Bräuning S, Lord J, Pither-Joyce M, McCallum J, Macknight RC (2016) Doubled Haploid ‘CUDH2107’ as a Reference for bulb onion (Allium cepa L) research: development of a transcriptome catalogue and identification of transcripts associated with male fertility. PLoS One 11:e0166568

    Article  PubMed  PubMed Central  Google Scholar 

  • Khrustaleva LI, Kik C (1998) Cytogenetical studies in the bridge cross Allium cepa × (A fistulosum × A roylei). Theor Appl Genet 96:8–14

    Google Scholar 

  • Khrustaleva LI, de Melo PE, van Heusden AW, Kik C (2005) The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid Allium population. Genetics 169:1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khrustaleva L, Jiang J, Havey MJ (2016) High-resolution tyramide-FISH map** of markers tightly linked to the male-fertility restoration (Ms) locus of onion. Theor Appl Genet 129:535–545

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Kim K, Yang T-J, Kim S (2016) Completion of the mitochondrial genome sequence of onion (Allium cepa L) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmF N gene split. Curr Genet 62:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Yang T-J, Kim S (2018) Identification of a gene responsible for cytoplasmic male-sterility in onions (Allium cepa L) using comparative analysis of mitochondrial genome sequences of two recently diverged cytoplasms. Theor Appl Genet 132:313–322

    Article  PubMed  Google Scholar 

  • King J, Bradeen J, Bark O, McCallum J, Havey M (1998) A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96:52–62

    Article  CAS  Google Scholar 

  • Kirk JTO, Rees H, Evans G (1970) Base composition of nuclear DNA with the genus Allium. Heredity 25:507–512

    Article  CAS  Google Scholar 

  • Kudryavtseva N, Ermolaev A, Karlov G, Kirov I, Shigyo M, Sato S, Khrustaleva L (2021) A Dual-color Tyr-FISH method for visualizing genes/markers on plant chromosomes to create integrated genetic and cytogenetic maps. Int J Mol Sci 22:5860

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhl J, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A et al (2004) A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales. Plant Cell 16:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Labani RM, Elkington TT (1987) Nuclear DNA variation in the genus Allium L (Liliaceae). Heredity 59:119–128

    Article  Google Scholar 

  • Lee JH, Natarajan S, Biswas MK, Shirasawa K, Isobe S, Kim HT, Nou IS et al (2018) SNP discovery of Korean short day onion inbred lines using double digest restriction site-associated DNA sequencing. PLoS One 13(8):e0201229

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Qiu Z, Lu X, Shi B, Sun X, Tang X, Qiao X (2018) Comparative transcriptome analysis of temperature-induced green discoloration in garlic. Int J Genom 2018:6725728

    Google Scholar 

  • Lutz KA, Wang W, Zdepski A, Michael TP (2011) Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. BMC Biotechnol 11:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloy S, Hughes K (2013) Brenner’s encyclopedia of genetics, 2nd edn. Elsevier, New York, pp 52–54

    Google Scholar 

  • Mandal S, Cramer CS (2021) Comparing visual and image analysis techniques to quantify fusarium basal rot severity in mature onion bulbs. Horticulturae 7:156

    Article  Google Scholar 

  • Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092–1250092

    Article  PubMed  Google Scholar 

  • Martin W, McCallum J, Shigyo M, Jakse J, Kuhl J, Yamane N, Pither-Joyce M et al (2005) Genetic map** of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Genet Genom 274:197–204

    Article  CAS  Google Scholar 

  • Martínez LE, Agüero CB, López ME, Galmarini CR (2000) Improvement of in vitro gynogenesis induction in onion (Allium cepa L.) using polyamines. Plant Sci 156(2):221–226. https://doi.org/10.1016/s0168-9452(00)00263-6

  • Masuzaki S, Shigyo M, Yamauchi N (2006) Complete assignment of structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of the shallot (Allium cepa L). Genes Genet Syst 81:255–263

    Article  CAS  PubMed  Google Scholar 

  • Masuzaki S, Yahuchi S, Yamauchi N, Shigyo M (2007) Morphological characterisation of multiple alien addition lines of Allium reveals the chromosomal locations of gene(s) related to bulb formation in Allium cepa L J. Hort. Sci. Biotechnol 82:393–396

    Google Scholar 

  • Matsuse K, Abdelrahman M, Ariyanti NA, Tsuji F, Hirata S, Nakajima T, Sato M, Hirai MY, Manochai B, Shigyo M (2022) Targeted metabolome profiling of Indonesian shallots and Japanese long-day/short-day bulb onions. Metabolites 12:1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M (2006) Genetic map** of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967

    Article  CAS  PubMed  Google Scholar 

  • McCallum J, Baldwin S, Shigyo M, Deng Y, van Heusden S, Pither-Joyce M, Kenel F (2012) Allium Map-a comparative genomics resource for cultivated Allium vegetables. BMC Genomics 13:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalik B, Adamus A, Nowak E (2000) Gynogenesis in Polish Onion Cultivars, Journal of Plant Physiology 156(2):211–216. https://doi.org/10.1016/S0176-1617(00)80308-9

  • Mueller RL (2015) Genome biology and the evolution of cell-size diversity. Cold Spring Harb Perspect Biol 7:a019125

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagl W, Fusenig H-P (1979) Types of chromatin organization in plant nuclei. Plant Syst Evol Suppl 2:221–233

    Article  Google Scholar 

  • Ohri D, Fritsch RM, Hanelt P (1998) Evolution of genome size inAllium (Alliaceae). Pl Syst Evol 210:57–86. https://doi.org/10.1007/BF00984728

  • Peffley EB, Corgan J, Horak K, Tanksley S (1985) Electrophoretic analysis of Allium alien addition lines. Theor Appl Genet 71:176–184

    Google Scholar 

  • PeÅ¡ka V, Mandáková T, Ihradská V, Fajkus J (2019) Comparative dissection of three giant genomes: Allium cepa, Allium sativum, and Allium ursinum. Int J Mol Sci 20:733

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23:305–308

    Google Scholar 

  • Ranjekar PK, Pallotta D, Lafontaine JG (1978) Analysis of plant genomes V Comparative study of molecular properties of DNAs of seven Allium species. Biochem Genet 16:957–970

    Article  CAS  PubMed  Google Scholar 

  • Ricroch A, Yockteng R, Brown SC, Nadot S (2005) Evolution of genome size across some cultivated Allium species. Genome 48:511–520

    Article  CAS  PubMed  Google Scholar 

  • Romanov DV, Kiseleva AV, Khrustaleva LI (2014) Physical map** of genes on the chromosomes of onion (Allium cepa L) using EST-clones and Tyramide-FISH. Izvestiya Timiryazev Agric Acad 1:105–114

    Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  PubMed  Google Scholar 

  • Scheffler IE (2008) Mitochondria, 2nd edn. Wiley-Liss, New York

    Google Scholar 

  • Scholten OE, van Kaauwen MPW, Shahin A, Hendrickx PM, Keizer LCP et al (2016) SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol 16:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekine D, Yabe S (2020) Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding. Breed Sci 70:594–604

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibata F, Hizume M (2002) The identification and analysis of the sequences that allow the detection of Allium cepa chromosomes by GISH in the allodiploid A wakegi. Chromosome 111:184–191

    Article  CAS  Google Scholar 

  • Shigyo M, Kik C (2008) Handbook of plant breeding, vol 2. Springer, New York 121–159

    Google Scholar 

  • Shigyo M, Tashiro Y, Isshiki S, Miyazaki S (1996) Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L) with extra chromosomes from shallot (A cepa L Aggregatum group). Gene Genet Sys 71:363–371

    Article  CAS  Google Scholar 

  • Shigyo M, Iino M, Isshiki S, Tashiro Y (1997a) Morphological characteristics of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. Aggregatum group). Genes Genet Syst 72:181–186

    Google Scholar 

  • Shigyo M, Tashiro Y, Iino M, Terahara N, Ishimaru K, Isshiki S (1997b) Chromosomal locations of genes related to flavonoid and anthocyanin production in leaf sheath of shallot (Allium cepa L. Aggregatum group). Genes Genet Syst 72:149–152

    Google Scholar 

  • Shigyo M, Wako T, Kojima A, Yamauchi N, Tashiro Y (2003) Transmission of alien chromosomes from selfed progenies of a complete set of Allium monosomic additions: The development of a reliable method for the maintenance of a monosomic addition set Genome 46:1098–1103

    Google Scholar 

  • Shigyo M, Khar A, Abdelrhaman M (2018) The Allium genomes. In: Kole C (ed) Compendium of plant genomes. Springer, Cham

    Google Scholar 

  • Sohn SH, Ahn YK, Lee TH, Lee JE, Jeong MH, Seo CH, Chandra R, Kwon YS et al (2016) Construction of a draft reference transcripts of onion (Allium cepa) using long-read sequencing. Plant Biotechnol Rep 10:383390

    Article  Google Scholar 

  • Song Y, Chen Y, Lv J, Xu J, Zhu S, Li M, Chen N (2017) Development of chloroplast genomic resources for Oryza species discrimination. Front Plant Sci 8:1854

    Article  PubMed  PubMed Central  Google Scholar 

  • Stack SM, Comings DE (1979) The chromosomes and DNA of Allium cepa. Chromosoma 70:161–181

    Article  CAS  Google Scholar 

  • Sulistyaningsih E, Aoyagi Y, Tashiro Y (2006) Flower bud culture of shallot (Allium cepa L Aggregatum group) with cytogenetic analysis of resulting gynogenic plants and somaclones. Plant Cell Tiss Org Cult 86:249–255

    Article  Google Scholar 

  • Sun X, Zhu S, Li N, Cheng Y, Zhao J, Qiao X et al (2020) A chromosome-level genome assembly of garlic (Allium sativum) provides Insights intogenome evolution and allicin biosynthesis. Mol Plant 13:1–12

    Article  CAS  Google Scholar 

  • Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua C, Cooper VS, Lynch M (2016) Evolution of the insertion-deletion mutation rate across the tree of life. G3 (Bethesda) 8:2583–2591

    Article  Google Scholar 

  • Susek A, Javornik B, Bohanec B (2002) Factors affecting direct organogenesis from flower explants of Allium giganteum. Plant Cell Tiss Organ Cult 68:27–33

    Article  CAS  Google Scholar 

  • Suzuki G, Ura A, Saito N, Do G, So B, Yamamoto M, Mukai Y (2001) BAC FISH analysis in Allium cepa. Genes Genet Syst 76:251–255

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Zhang X, Miao C, Zhang J, Ming R et al (2015) ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol 16:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro Y, Tsutsumi M, Shigyo M (2000) Production and gene analyses of alien monosomic addition lines of Allium fistulosum L with extra chromosomes from wild species in section Cepa of Allium. Acta Hortic 521:211–218

    Article  CAS  Google Scholar 

  • Tsujimura M, Kaneko T, Sakamoto T, Kimura S, Shigyo M, Yamagishi H, Terachi T (2019) Multichromosomal structure of the onion mitochondrial genome and a transcript analysis. Mitochondrion 46:179–186

    Article  CAS  PubMed  Google Scholar 

  • Tsukazaki H, Yamashita K, Yaguchi S, Masuzaki S, Fukuoka H, Yonemaru J, Kanamori H et al (2008) Construction of SSR-based chromosome map in bunching onion (Allium fistulosum). Theor Appl Genet 117:1213–1223

    Article  CAS  PubMed  Google Scholar 

  • Tsukazaki H, Yamashita K, Yaguchi S, Yamashita K, Hagihara T, Shigyo M et al (2010) Direct determination of the chromosomal location of bunching onion and bulb onion markers using bunching onion-shallot monosomic additions and allotriploid-bunching onion single alien deletions. Theor Appl Genet 122:501–510

    Article  PubMed  Google Scholar 

  • Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT (2017) Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot 68:1835–1849

    CAS  PubMed  Google Scholar 

  • van der Valk P, de Vries SE, Everink JT, Verstappen F, de Vries JN (1991) Pre- and post-fertilization barriers to backcrossing theinterspecific hybrid between Allium fistulosum L and A cepa L with A cepa. Euphytica 53:201–209

    Article  Google Scholar 

  • van Heusden AV, Shigyo M, Tashiro Y, van Ginkel RV, Kik C (2000) AFLP linkage group assignment to the chromosomes of Allium cepa L via monosomic addition lines. Theor Appl Genet 100:480–486

    Article  Google Scholar 

  • Vitte C, Estep MC, Leebens-Mack J, Bennetzen JL (2013) Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes. Ann Bot 112:881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Kohn C, KieÅ‚kowska A, Havey MJ (2013) Sequencing and annotation of the chloroplast DNAs and identification of polymorphisms distinguishing normal male-fertile and male-sterile cytoplasms of onion. Genome 56:737–742

    Article  Google Scholar 

  • Vosa CG (1976) Heterochromatic handing patterns in Allium, II Ueterochromatic variation in species of the Paniculatum group. Chromosoma (Berl) 57:119–133

    Article  Google Scholar 

  • Vu Q H, El-Sayed M, Ito S-I, Yamauchi N, Shigyo M (2012) Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa Aggregatum group.Genome 55(11):797–807

    Google Scholar 

  • Warmke HE, Lee SL (1978) Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science 200:561–563

    Article  CAS  PubMed  Google Scholar 

  • Yaguchi S, McCallum J, Shaw M, Pither-Joyce M, Onodera S, Shiomi N et al (2008) Biochemical and genetic analysis of carbohydrate accumulation in Allium cepa L. Plant Cell Physiol 49:730–710

    Article  CAS  PubMed  Google Scholar 

  • Yaguchi S, Matsumoto M, Date R, Harada K et al (2013) Biochemical analyses of the antioxidative activity and chemical ingredients in eight different Allium alien monosomic addition line. Biosci Biotechnol Biochem 77:2486–2488

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K (1999a) Development of cytoplasmic male sterile lines of japanese bunching onion (Allium fistulosum L.) and shallot (A. cepa L. Aggregatum group) with cytoplasms of wild species Kagoshima Univ Kagoshima, Japan PhD Thesis

    Google Scholar 

  • Yamashita Ki, Tashiro Y (2004) Seed productivity test of CMS lines of Japanese bunching onion (Allium fistulosum L.) possessing the cytoplasm of a wild species, A. galanthum Kar. et Kir.. Euphytica 136:327–331. https://doi.org/10.1023/B:EUPH.0000032746.60805.fb

  • Yamashita K, Arita H, Tashiro Y (1999) Cytoplasm of a wild species, Allium galanthum Kar. et Kir., is useful for develo** the male sterile line of A. fistulosum L. J Japan Soc Hort Sci 68:788–797

    Google Scholar 

  • Yamashita K, Arita H, Tashiro Y (1999b) Isozyme and RAPD markers linked to fertility restoring gene for cytoplasmic male sterile Allium fistulosum L. with cytoplasm of A. galanthum Kar. et Kir. J Japan Soc Hort Sci 68:954–959

    Google Scholar 

  • Yamashita K, Takatori Y, Tashiro Y (2002) Development of sequence characterized amplified region (SCAR) markers linked to the fertility restoring gene for cytoplasmic male sterile Allium fistulosum L. possessing the cytoplasm of A. galanthum Kar. et Kir. J Japan Soc Hort Sci 71:777–779

    Google Scholar 

  • Yamashita K-I, Shigyo M, Masuzaki S-I, Yaguchi S, Hang TTM, Yamauchi N et al (2007) The application of alien-chromosome addition lines and cytoplasmic substitution lines to studies on genetics and breeding in Allium cepa. Genes Genomes Genom 1:27–34

    Google Scholar 

  • Yarali F, Yanmaz R (2016) The effects of media composition on in vitro gynogenic embryo induction in Allium tuncelianum (Kollaman) Ozhatay, Matthew, Siraneci. Int J Agric Sci 8:3247–3251

    Google Scholar 

  • Yu N, Kim S (2020) Identification of Ms2, a novel locus controlling male-fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L), and development of tightly linked molecular markers. Euphytica 217:191

    Article  Google Scholar 

  • Zhang C, Li X, Zhan Z, Cao L, Zeng A, Chang G, Liang Y (2018) Transcriptome sequencing and metabolism analysis reveals the role of cyanidin metabolism in dark-red onion (Allium cepa L) bulbs. Sci Rep 8:14109

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, Zheng T, Jia H, Song C, Fang J, Wang C (2019) VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biol 19:111

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Abdelrahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdelrahman, M., Rabie, R., El-sayed, M., Shigyo, M. (2023). Metabolomics and Cytoplasmic Genomics of Allium. In: Kole, C. (eds) Compendium of Crop Genome Designing for Nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-19-3627-2_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3627-2_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3627-2

  • Online ISBN: 978-981-19-3627-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation