Self-Powered Liquid Metal Machine

  • Living reference work entry
  • First Online:
Handbook of Liquid Metals
  • 36 Accesses

Abstract

With the development of materials and the increasing demand for their use, research on flexible machines has become a major trend. Gallium and its alloys, as a typical class of liquid metals, may provide new ideas for the soft machine with their unique mobility and electrical properties. The present laboratory has discovered for the first time the self-powered mechanism of a synthetic motor based on liquid metals. The liquid metal motor starts to move in the form of a transformable motor after swallowing a small amount of matter, with a speed of centimeters per second and a lifetime of more than 1 h. Unlike conventional motors, the liquid metal motor can deform itself depending on the space it is in. At the same time, such machines do not require an external electrical supply; they use aluminum as “food” and can spontaneously convert chemical energy into mechanical energy. Based on the self-running machine formed by the liquid metal swallowing aluminum, researchers have developed a variety of related cutting-edge applications, such as self-powered pumps, periodic switching elements, and transformable wheeled drug carriers.

In this chapter, the principles and applications of self-powered liquid metal machines are presented, including the design of operating channels and substrates, the working mechanism of motors, and practical application cases. Obviously, the discovery of liquid metal self-powered effects and the corresponding machine forms opens up a whole new path for the development of more complex reconfigurable intelligent robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Zhang, Y. Yao, L. Sheng, J. Liu, Self-fueled biomimetic liquid metal mollusk. Adv. Mater. 27(16), 2648–2655 (2015)

    Article  CAS  Google Scholar 

  2. S. Xu, B. Yuan, Y. Hou, T. Liu, J. Fu, J. Liu, Self-fueled liquid metal motors. J. Phys. D Appl. Phys. 52(35), 353002 (2019)

    Article  CAS  Google Scholar 

  3. X. Tang, S.Y. Tang, V. Sivan, W. Zhang, A. Mitchell, K. Kalantar-zadeh, et al., Photochemically induced motion of liquid metal marbles. Appl. Phys. Lett. 103(17), 174104 (2013)

    Article  Google Scholar 

  4. X. Yang, S. Tan, B. Yuan, J. Liu, Alternating electric field actuated oscillating behavior of liquid metal and its application. Science China Technol. Sci. 59(4), 597–603 (2016)

    Article  CAS  Google Scholar 

  5. S. Tan, X. Yang, H. Gui, Y. Ding, L. Wang, B. Yuan, et al., Galvanic corrosion couple induced Marangoni flow of liquid metal. Soft Matter 13, 2309–2314 (2017)

    Article  CAS  Google Scholar 

  6. Y. Cui, F. Liang, Z. Yang, S. Xu, X. Zhao, Y. Ding, et al., Metallic bond enabled wetting behavior at the liquid Ga/CuGa2 interfaces. ACS Appl. Mater. Interfaces 10, 9203–9210 (2018)

    Article  CAS  Google Scholar 

  7. S. Xu, X. Zhao, J. Liu, Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renew. Sustain. Energy Rev. 92, 17–37 (2018)

    Article  CAS  Google Scholar 

  8. J. Zhang, Y. Yao, J. Liu, Autonomous convergence and divergence of the self-powered soft liquid metal vehicles. Sci. Bull. 60(10), 943–951 (2015)

    Article  CAS  Google Scholar 

  9. J. Zhang, R. Guo, J. Liu, Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J. Mater. Chem. B 4(32), 5349–53557 (2016)

    Article  CAS  Google Scholar 

  10. B. Yuan, L. Wang, X. Yang, Y. Ding, S. Tan, L. Yi, et al., Liquid metal machine triggered violin-like wire oscillator. Adv. Sci. 3(10), 1600212 (2016)

    Article  Google Scholar 

  11. J. Liu, Liquid metal machine is evolving to soft robotics. Science China Technol. Sci. 59, 1793–1794 (2016)

    Article  Google Scholar 

  12. H. Wang, S. Chen, B. Yuan, J. Liu, X. Sun, Liquid metal transformable machines. Accounts Mater. Res. 2(12), 1227–1238 (2021)

    Article  CAS  Google Scholar 

  13. Y. Zhou, J. Zu, J. Liu, Programmable intelligent liquid matter: Material, science and technology. J. Micromech. Microeng. 32, 103001 (2022)

    Article  Google Scholar 

  14. W. Wang, W. Duan, S. Ahmed, T.E. Mallouk, A. Sen, Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8(5), 531–554 (2013)

    Article  CAS  Google Scholar 

  15. D.O. Flamini, S.B. Saidman, J.B. Bessone, Aluminium activation produced by gallium. Corros. Sci. 48(6), 1413–1425 (2006)

    Article  CAS  Google Scholar 

  16. Y. Wang, R.M. Hernandez, D.J. Bartlett, J.M. Bingham, T.R. Kline, A. Sen, et al., Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25), 10451–10456 (2006)

    Article  CAS  Google Scholar 

  17. J. Lee, C.J. Kim, Surface-tension-driven microactuation based on continuous electrowetting. J. Microelectromech. Syst. 9(2), 171–180 (2000)

    Article  CAS  Google Scholar 

  18. S.Y. Tang, K. Khoshmanesh, V. Sivan, K. Kalantar-zadeh, Liquid metal enabled pump. Proc. Natl. Acad. Sci. 111(9), 3304–3309 (2014)

    Article  CAS  Google Scholar 

  19. A.V. Ilyukhina, A.S. Ilyukhin, E.I. Shkolnikov, Hydrogen generation from water by means of activated aluminum. Int. J. Hydrog. Energy 37(21), 16382–16387 (2012)

    Article  CAS  Google Scholar 

  20. Y. Goryunov, N. Pertsov, B. Summ, Rebinder Effect (Nauka, Moscow, 1966)

    Google Scholar 

  21. A.V. Ilyukhina, O.V. Kravchenko, B.M. Bulychev, E.I. Shkolnikov, Mechanochemical activation of aluminum with gallams for hydrogen evolution from water. Int. J. Hydrog. Energy 35(5), 1905–1910 (2010)

    Article  CAS  Google Scholar 

  22. B. Yuan, S. Tan, J. Liu, Dynamic hydrogen generation phenomenon of aluminum fed liquid phase Ga–In alloy inside NaOH electrolyte. Int. J. Hydrog. Energy 41(3), 1453–1459 (2016)

    Article  CAS  Google Scholar 

  23. M.I. Kohira, Y. Hayashima, M. Nagayama, S. Nakata, Synchronized self-motion of two camphor boats. Langmuir 17, 7124–7129 (2001)

    Article  CAS  Google Scholar 

  24. B. Yuan, Z. He, W. Fang, X. Bao, J. Liu, Liquid metal spring: Oscillating coalescence and ejection of contacting liquid metal droplets. Sci. Bull. 60(6), 648–653 (2015)

    Article  CAS  Google Scholar 

  25. A. Hashmi, Y. Xu, B. Coder, P.A. Osborne, J. Spafford, G.E. Michael, et al., Leidenfrost levitation: Beyond droplets. Sci. Rep. 2, 797 (2012)

    Article  Google Scholar 

  26. P.G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)

    Book  Google Scholar 

  27. L. Hu, B. Yuan, J. Liu, Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. Sci. Rep. 7(1), 7256 (2017)

    Article  Google Scholar 

  28. L. Hu, J. Li, J. Tang, J. Liu, Surface effects of liquid metal amoeba. Sci. Bull. 62(10), 700–706 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Zhou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, Y. (2024). Self-Powered Liquid Metal Machine. In: Liu, J., Rao, W. (eds) Handbook of Liquid Metals. Springer, Singapore. https://doi.org/10.1007/978-981-19-2797-3_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2797-3_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2797-3

  • Online ISBN: 978-981-19-2797-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation