Chorioallantoic Membrane (CAM) and In Ovo Models as Potential Platforms for Testing Cancer Agents

  • Living reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

The construction of clinically related models for cancer metastasis and anticancer testing plays a significant role in evidence-based translational cancer research. Most of the vivo experiments have been conducted on cost- and time-intensive animal models. The CAM has demonstrated successful engraftment of over a dozen tumor subtypes, demonstrating its suitability as a model for patient-derived xenografts. In many investigations, xenografts resembled the unique patient tumor and CAM, increased vascularity subsequent engraftment, mesenchyme micrometastasis was observed. A number of standard and experimental cancer therapies have been applied to xenografts, with the detection of both positive correlations and combinational effects between clinical outcome and drug assays. CAMs allow DNA- and RNA-based patient tumor sequencing, as well as testing of several targeted treatments on fragments from a similar cancer in a short period of time from 5 to 10 days. The CAM chick embryo may provide an excellent model for evaluating antitumor agents which will target the metastatic capability of tumor cells. We have discussed the use of chick chorioallantoic membrane (CAM) as a cost-efficient, fast model for in vivo screening of antitumor drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ames JJ, Henderson T, Liaw L, Brooks PC (2016) Methods for analyzing tumor angiogenesis in the chick chorioallantoic membrane model. Methods Mol Biol 1406:255–269

    Article  CAS  PubMed  Google Scholar 

  • Bailey MJ, Jones AJ, Shorthouse AJ, Raghaven D, Selby P, Gibbs J, Peckham MJ, Tanaka M, Endo Y (1984) Chick embryo assay as limitations of the human tumour xenograft system in individual patient drug sensitivity testing. Br J Cancer 50:721–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balciuniene N, Tamasauskas A, Valanciute A, Deltuva V, Vaitiekaitis G, Gudinaviciene L, Weis J, von Keyserlingk DG (2009) Histology of human glioblastoma transplanted on chicken chorioallantoic membrane. Medicina (Kaunas) 45:123–131

    Article  Google Scholar 

  • Balke M, Neumann A, Szuhai K, Agelopoulos K, August C, Gosheger G, Hogendoorn PC, Athanasou N, Buerger H, Hagedorn M (2011) A short-term in vivo model for giant cell tumor of bone. BMC Cancer 11:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Cimpean AM, Ribatti D, Raica M (2008) The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis 11:311–319

    Article  PubMed  Google Scholar 

  • Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, Lee D, Kalsy A, Gomez-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Awad MM, Ramaswamy S, Mino-Kenudson M, Lafrate AJ, Benes CH, Engelman JA (2014) Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346:1480–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagg CP, Karnofsky DA, Roddy J (1956) Growth of transplantable human tumors in the chick embryo and hatched chick. Cancer Res 16(7):589–594

    CAS  PubMed  Google Scholar 

  • Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81–94

    Article  CAS  PubMed  Google Scholar 

  • Deryugina EI, Quigley JP (2008) Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol 130(6):1119–1130

    Google Scholar 

  • Di Paolo D, Pastorino F, Zuccari G, Caffa L, Loi M, Marimpietri D, Brignole C, Perri P, Cilli M, Nico B, Ribatti D, Pistoia V, Ponzoni M, Pag Nan G (2013) Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. J Control Release 170:445–451

    Article  PubMed  CAS  Google Scholar 

  • Dohle DS, Pasa SD, Gustmann S, Laub M, Wissler JH, Jennissen HP, Dunker N (2009) Chick ex ovo Culture and ex ovo CAM Assay: How it Really Works. J Vis Exp 33:1620

    Google Scholar 

  • Dumartin L, Quemener C, Laklai H, Herbert J, Bicknell R, Bousquet C, Pyronnet S, Castronovo V, Schilling MK, Bikfalvi A, Hagedorn M (2010) Netrin-l mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology 138:1595–1606

    Article  CAS  PubMed  Google Scholar 

  • Fergelot P, Bernhard JC, Soulet F, Kilarski WW, Leon C, Courtois N, Deminiere C, Herbert JM, Antczak P, Falciani F, Rioux-Leclercq N, Patard JJ, Ferriere JM, Ravaud A, Hagedorn M, Bikfalvi A (2013) The experimental renal cell carcino- ma model in the chick embryo. Angiogenesis 16:181–194

    Article  PubMed  Google Scholar 

  • Ferician O, Cimpean AM, Avram S, Raica M (2015) Endostatin effects on tumor cells and vascular network of human renal cell carcinoma implanted on chick embryo chorioallantoic membrane. Anticancer Res 35:6521–6528

    CAS  PubMed  Google Scholar 

  • Fiebig HH, Maier A, Burger AM (2004) Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer 40(6):802–820

    Article  CAS  PubMed  Google Scholar 

  • Garralda E, Paz K, Lopez-Casas PP, Jones S, Katz A, Kann LM, Lopez-Rios F, Sarno F, Al Shahrour F, Vasquez D, Bruckheimer E, Anguoli SV, Calles A, Diaz LA, Velculescu VE, Valencia A, Sidransky D, Hidalgo M (2014) Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res 20:2476–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovanella BC, Stehlin JS, Williams LJ Jr (1995) Heterotransplantation of human malignant tumors in “nude” thymusless mice. II. Maligtion of apoptosis in cervical carcinoma cells by retinoids: implications for chemoprevention. J Cell Biochem Suppl 23:80–86

    Google Scholar 

  • Gullo C, Low WK, Teoh G (2008) Association of Epstein-Barr virus with nasopharyngeal carcinoma and current status of development of cancer-derived cell lines. Ann Acad Med Singap 37:769–777

    PubMed  Google Scholar 

  • Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A (2014) Patientderived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4:998–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda N, Kariyama Y, Hazama H, Ishii T, Kitajima Y, Inoue K, Ishizuka M, Tanaka T, Awazu K (2015) Optical properties of tumor tissues grown on the chorioallantoic membrane of chicken eggs: tumor model to assay of tumor response to photodynamic therapy. J Biomed Opt 20:125001

    Article  PubMed  Google Scholar 

  • Hurst EW, Cooke B, McLennan G (1939) A note on the survival and growth of human and rabbit tissues (normal and neoplastic) on the chorioallantois of the chick and duck embryo. Aust J Exp Biol Med Sci 17(2):215–224

    Google Scholar 

  • Inglehart RC, Scanlon CS, D'Silva NJ (2014) Re-viewing and reconsidering invasion assays in head and neck cancer. Oral Oncol 50:1137–1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail MS, Torsten U, Dressler C, Diederichs JE, Huske S, Weitzel H, Berlien HP (1999) Photodynamic therapy of malignant ovarian tumours cultivated on CAM. Lasers Med Sci 14:91–96

    Article  CAS  PubMed  Google Scholar 

  • Jefferies B, Lenze F, Sathe A, Truong N, Anton M, von Eisenhart-Rothe R, Nawroth R, Mayer-Kuckuk P (2017) Non-invasive imaging of engineered human tumors in the living chicken embryo. Sci Rep 7:4991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaufman N, Kinney TD, Mason EJ, Prieto LC Jr (1956) Maintenance of human neoplasm on the chick chorioallantoic membrane. Am J Pathol 32:271–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klagsbrun M, Knighton D, Folkman J (1976) Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res 36(1):110–114

    CAS  PubMed  Google Scholar 

  • Komatsu A, Higashi Y, Matsumoto K (2019) Various CAM tumor models. Enzymes 46:37–57

    Article  CAS  PubMed  Google Scholar 

  • Kroeger PT Jr, Drapkin R (2017) Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol 29(1):26–34

    Article  PubMed  Google Scholar 

  • Kue CS, Tan KY, Lam ML, Lee HB (2015) Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp Anim 64:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis MD, Lehmann BD, Pietenpol JA, Chang JC (2013) Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res 15:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Pathak RR, Lopez-Rivera E, Friedman SL, Aguirre-Ghiso JA, Sikora AG (2015) The In Ovo Chick Chorioallantoic Membrane (CAM) assay as an efficient xenograft model of hepatocellular carcinoma. J Vis Exp 104:52411

    Google Scholar 

  • Li H, Wheeler S, Park Y, Ju Z, Thomas SM, Fichera M, Egloff AM, Lui VW, Duvvuri U, Bauman JE, Mills GB, Grandis JR (2016) Proteomic charac terization of head and neck cancer patient-derived xenografts. Mol Cancer Res 14:278–286

    Article  CAS  PubMed  Google Scholar 

  • Malaney P, Nicosia SV, Dave V (2014) One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett 344:1–12

    Article  CAS  PubMed  Google Scholar 

  • Marimpietri D, Nico B, Vacca A, Mangieri D, Catarsi P, Ponzoni M, Ribatti D (2005) Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin. Oncogene 24:6785–6795

    Article  CAS  PubMed  Google Scholar 

  • Marimpietri D, Brignole C, Nico B, Pastorino F, Pezzolo A, Piccardi F, Cilii M, Di Paolo D, Pagnan G, Longo L, Perri P, Ribatti D, Ponzoni M (2007) Combined therapeutic effects of vinblastine and rapamycin on human neuroblastoma growth, apoptosis, and angiogenesis. Clin Cancer Res 13:3977–3988

    Article  CAS  PubMed  Google Scholar 

  • Marzullo A, Vacca A, Roncali L, Pollice L, Ribatti D (1998) Angiogenesis in hepatocellular carcinoma: an experimental study in the chick embryo chorioallantoic membrane. Int J Oncol 13:17–21

    CAS  PubMed  Google Scholar 

  • Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer BJ, Kang MH, Villablanca JG, Janeba J, Maurer BJ, Kang MH, Villablanca JG, Janeba J, Groshen S, Matthay KK, Sondel PM, Maris JM, Jackson HA, Goodarzian F, Shimada H, Czarnecki S, Hasenauer B, Reynolds CP, Marachelian A (2013) Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: a report from the New Approaches to Neuroblastoma Therapy (NANT) consortium. Pediatr Blood Cancer 60:1801–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenstern DA, Marzouki M, Bartels U, Irwin MS, Sholler GL, Gammon J, Yankanah R, Wu B, Samson Y, Baruchel S (2014) Phase I study of vinblastine and sirolimus in pediatric patients with recurrent or refractory solid tumors. Pediatr Blood Cancer 61:128–133

    Article  CAS  PubMed  Google Scholar 

  • Mostafa LK, Jones DB, Wright DH (1980) Mechanism of the induction of angiogenesis by human neoplastic lymphoid tissue: studies on the chorioallantoic membrane (CAM) of the chick embryo. J Pathol 132:191–205

    Article  CAS  PubMed  Google Scholar 

  • Oridate N, Lotan D, Mitchell MF, Hong WK, Lotan R (1974) Inhibition of proliferation and induc- cells nant tumors induced by injection of cell cultures derived from human solid tumors. J Natl Cancer Inst 52:921–930

    Article  Google Scholar 

  • Petruzzelli GJ, Snyderman CH, Johnson JT, Myers EN (1993) Angiogenesis induced by head and neck squamous cell carcinoma xenografts in the chick embryo chorioallantoic membrane model. Ann Otol Rhinol Laryngol 102:215–221

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2014a) History of research on angiogenesis. Chem Immunol Allergy 99:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2014b) The chick embryo chorioallantoic membrane as a model for tumor biology. Exp Cell Res 328:314–324

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Alessandri G, Baronio M, Raffaghello L, Cosimo E, Marimpietri D, Montaldo PG, De Falco G, Caruso A, Vacca A, Ponzoni M (2001) lnhibition of neuroblastoma-induced angiogenesis by fenretinide. Int J Cancer 94:314–321

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1:85–91

    Article  CAS  PubMed  Google Scholar 

  • Rosfjord E, Lucas J, Li G, Gerber HP (2014) Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharma col 91:135–143

    Article  CAS  Google Scholar 

  • Rovithi M, Avan A, Funel N, Leon LG, Gomez VE, Wurdinger T, Griffioen AW, Verheul HMW, Elisa G (2017) Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: a platform for drug testing. Sci Rep 7:44686

    Article  PubMed  PubMed Central  Google Scholar 

  • San Martin R, Pathak R, Jain A, Jung SY, Hilsen-beck SG, Pina-Barba MC, Sikora AG, Pienta KJ, Rowley DR (2017) Tenascin-C and integrin alpha9 mediate interactions of prostate cancer with the bone microenvironment. Cancer Res 77:5977–5988

    Article  CAS  PubMed  Google Scholar 

  • Sapra P, Damelin M, Dijoseph J, Marquette K, Geles KG, Golas J, Dougher M, Narayanan B, Giannakou A, Khandke K, Dushin R, Ernstoff E, Lucas J, Leal M, Hu G, O’Donnell CJ, Tchistia Kova L, Abraham RT, Gerber HP (2013) Long-term tumor regression induced by an antibody-drug conjugate that targets 5T4, an oncofetal anti- gen expressed on tumor-initiating cells. Mol Cancer Ther 12:38–47

    Article  CAS  PubMed  Google Scholar 

  • Seidlitz E, Korbie D, Marien L, Richardson M, Singh G (2004) Quantification of anti-angiogenesis using the capillaries of the chick chorioallantoic membrane demonstrates that the effect of human angiostatin is age-dependent. Microvasc Res 67(2):105–116

    Article  CAS  PubMed  Google Scholar 

  • Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M (1984) Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223:1296–1299

    Article  CAS  PubMed  Google Scholar 

  • Shoin K, Yamashita J, Enkaku F, Sasaki T (1991) Chemosensitivity test for malignant glioma. Jpn J Cancer Res 82:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommers SC, Sullivan BA, Warren S (1952) Heterotransplantation of human cancer. Ill. Chorioallantoic membranes of embryonated eggs. Cancer Res 12:915–917

    CAS  PubMed  Google Scholar 

  • Stevenson HN (1918) Growth of tumors in the chick embryo. J Cancer Res 3:63–74

    Google Scholar 

  • Sys G, Bockstal MV, Forsyth R, Balke M, Poffyn B, Uyttendaele D, Bracke M, De Wever O (2012) Tumor grafts derived from sarcoma patients retain tumor morphology, viability, and invasion potential and indicate disease outcomes in the chick chorioallantoic membrane model. Cancer Lett 326(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Sys GM, Lapeire L, Stevens N, Favoreel H, Forsyth R, Bracke M, De Wever O (2013) The in ovo CAM-assay as a xenograft model for sarcoma. J Vis Exp 77:e50522

    Google Scholar 

  • Taizi M, Deutsch VR, Leitner A, Ohana A, Goldstein RS (2006) A novel and rapid in vivo system for testing therapeutics on human leukemias. Exp Hematol 34:1698–1708

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968

    CAS  PubMed  Google Scholar 

  • Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xeno- grafts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toivanen R, Frydenberg M, Murphy D, Pedersen J, Ryan A, Pook D, Berman DM, Taylor RA, Risbridger GP (2013) A preclinical xenograft model identifies castration-tolerant cancer re-populating cells in localized prostate tumors. Sci Transl Med 5:187ra171

    Article  CAS  Google Scholar 

  • Uloza V, Kuzminiene A, Salomskaite-Davalgiene S, Palubinskiene J, Balnyte L, Uloziene L, Saferis V, Valanciute A (2015) Effect of laryngeal squamous cell carcinoma tissue implantation on the chick embryo chorioallantoic membrane: morphometric measurements and vascularity. Biomed Res Int 2015:629754

    Article  PubMed  PubMed Central  Google Scholar 

  • Uloza V, Kuzminiene A, Palubinskiene J, Balnyte I, Uloziene I, Valanciute A (2017) Model of human recurrent respiratory papilloma on chicken embryo chorioallantoic membrane for tumor angiogenesis research. Histol Histopathol 32(7):699–710

    CAS  PubMed  Google Scholar 

  • Valdes TL, Kreutzer D, Moussy F (2002) The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J Biomed Mater Res 62:273–282

    Article  CAS  PubMed  Google Scholar 

  • Vitale G, Gaudenzi G, Circelli L, Manzoni MF, Bassi A, Fioritti N, Faggiano A, Colao A (2017) Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer 24:RI-r12

    Article  Google Scholar 

  • Vu MT, Smith CF, Burger PC, Klintworth GK (1985) An evaluation of methods to quantitate the chick chorioallantoic membrane assay in angiogenesis. Lab Investig 53:499–508

    CAS  PubMed  Google Scholar 

  • Woloszyk A, Wolint P, Becker AS, Boss A, Fath W, Tian Y, Hoerstrup SP, Buschmann J, Emmert MY (2019) Novel multimodal MRI and MicroCT imaging approach to quantify angiogenesis and 3D vascular architecture of biomaterials. Sci Rep 9(1):19474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • **ang J, Leung AW, Xu C (2014) Effect of ultra-sound sonication on clonogenic survival and mitochondria of ovarian cancer cells in the presence of methylene blue. J Ultrasound Med 33:1755–1761

    Article  PubMed  Google Scholar 

  • **ao X, Zhou X, Ming H, Zhang J, Huang G, Zhang Z, Li P (2015) Chick chorioallantoic membrane assay: a 3D animal model for study of human nasopharyngeal carcinoma. PLoS One 10:e0130935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokoyama Y, Shigeto T, Miura R, Kobayashi A, Mizunuma M, Yamauchi A, Futagami M, Mizunuma H (2016) A strategy using photodynamic therapy and clofibric acid to treat peritoneal dissemination of ovarian cancer. Asian Pac J Cancer Prev 17:775–779

    Article  PubMed  Google Scholar 

  • Zijlstra A, Mellor R, Panzarella G, Aimes RT, Hooper JD, Marchenko ND, Quigley JP (2002) A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 62(23):7083–7092

    CAS  PubMed  Google Scholar 

  • Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo Z, Syrovets T, Wu Y, Hafner S, Vernikouskaya I, Liu W, Ma G, Weil T, Simmet T, Rasche V (2017) The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds. Sci Rep 7:46690

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowtham Kumar Subbaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kulanthaivel, L. et al. (2022). Chorioallantoic Membrane (CAM) and In Ovo Models as Potential Platforms for Testing Cancer Agents. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation