Pseudocapacitive Materials

  • Living reference work entry
  • First Online:
Handbook of Energy Materials
  • 63 Accesses

Abstract

Currently, there is an urgent global need for electrochemical energy storage materials that simultaneously provide high power and high energy density. One strategy to achieve this is to use reversible surface or near-surface Faradaic reactions to store charge in pseudocapacitive materials. This enables the material to surpass the capacity limitations of electric double-layer capacitors and the mass transfer limitations of batteries. The research conducted along this path over the past decade has tremendously increased our understanding of pseudocapacitance and the materials that exhibit this phenomenon. In this chapter, an extensive introduction is provided for newly developed pseudocapacitive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015)

    Article  CAS  Google Scholar 

  • S. Ardizzone, G. Fregonara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35(1), 263–267 (1990)

    Article  CAS  Google Scholar 

  • V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)

    Article  CAS  Google Scholar 

  • V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)

    Article  CAS  Google Scholar 

  • Q. Bai, Q. **ong, C. Li, Y. Shen, H. Uyama, Hierarchical porous carbons from poly(methyl methacrylate)/bacterial cellulose composite monolith for high-performance Supercapacitor electrodes. ACS Sustain. Chem. Eng. 5(10), 9390–9401 (2017)

    Article  CAS  Google Scholar 

  • D. Baronetto, N. Krstajić, S. Trasatti, Reply to “note on a method to interrelate inner and outer electrode areas” by H. Vogt. Electrochim. Acta 39(16), 2359–2362 (1994)

    Article  CAS  Google Scholar 

  • S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22(3), 767–784 (2012)

    Article  CAS  Google Scholar 

  • T. Brezesinski, J. Wang, R. Senter, K. Brezesinski, B. Dunn, S.H. Tolbert, On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO2 thin films. ACS Nano 4(2), 967–977 (2010)

    Article  CAS  Google Scholar 

  • Y. Cai, B. Zhao, J. Wang, Z. Shao, Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. J. Power Sources 253, 80–89 (2014)

    Article  CAS  Google Scholar 

  • J. Cao, Q. Mei, R. Wu, W. Wang, Flower-like nickel–cobalt layered hydroxide nanostructures for super long-life asymmetrical supercapacitors. Electrochim. Acta 321, 134711 (2019)

    Article  CAS  Google Scholar 

  • J. Cao, T. Zhou, Y. Xu, Y. Qi, W. Jiang, W. Wang, P. Sun, A. Li, Q. Zhang, Oriented assembly of anisotropic Nanosheets into ultrathin flowerlike superstructures for energy storage. ACS Nano 15(2), 2707–2718 (2021)

    Article  CAS  Google Scholar 

  • Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, High-performance Supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23(6), 791–795 (2011)

    Article  CAS  Google Scholar 

  • Z. Chen, V. Augustyn, X. Jia, Q. **ao, B. Dunn, Y. Lu, High-performance sodium-ion Pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012)

    Article  CAS  Google Scholar 

  • Z. Chen, Y. Yuan, H. Zhou, X. Wang, Z. Gan, F. Wang, Y. Lu, 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv. Mater. 26(2), 339–345 (2014)

    Article  CAS  Google Scholar 

  • J. Chen, Y. Wang, J. Cao, Y. Liu, Y. Zhou, J.-H. Ouyang, D. Jia, Facile co-electrodeposition method for high-performance Supercapacitor based on reduced graphene oxide/Polypyrrole composite film. ACS Appl. Mater. Interfaces 9(23), 19831–19842 (2017)

    Article  CAS  Google Scholar 

  • D. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in Nanocrystalline vanadium nitride Supercapacitors. Adv. Mater. 18(9), 1178–1182 (2006)

    Article  CAS  Google Scholar 

  • N. Choudhary, C. Li, H.-S. Chung, J. Moore, J. Thomas, Y. Jung, High-performance one-body Core/Shell nanowire Supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10(12), 10726–10735 (2016)

    Article  CAS  Google Scholar 

  • B.E. Conway, Two-dimensional and quasi-two-dimensional isotherms for Li intercalation and upd processes at surfaces. Electrochim. Acta 38(9), 1249–1258 (1993)

    Article  CAS  Google Scholar 

  • B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66(1), 1–14 (1997)

    Article  CAS  Google Scholar 

  • J.M. D’Arcy, M.F. El-Kady, P.P. Khine, L. Zhang, S.H. Lee, N.R. Davis, D.S. Liu, M.T. Yeung, S.Y. Kim, C.L. Turner, A.T. Lech, P.T. Hammond, R.B. Kaner, Vapor-phase polymerization of Nanofibrillar poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano 8(2), 1500–1510 (2014)

    Article  CAS  Google Scholar 

  • Z. Fan, J. Zhu, X. Sun, Z. Cheng, Y. Liu, Y. Wang, High density of free-standing holey graphene/PPy films for superior volumetric capacitance of Supercapacitors. ACS Appl. Mater. Interfaces 9(26), 21763–21772 (2017)

    Article  CAS  Google Scholar 

  • A. Faour, C. Mousty, V. Prevot, B. Devouard, A. De Roy, P. Bordet, E. Elkaim, C. Taviot-Gueho, Correlation among structure, microstructure, and electrochemical properties of NiAl–CO3 layered double hydroxide thin films. J. Phys. Chem. C 116(29), 15646–15659 (2012)

    Article  CAS  Google Scholar 

  • J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. **e, Metallic few-layered VS2 ultrathin Nanosheets: High two-dimensional conductivity for in-plane Supercapacitors. J. Am. Chem. Soc. 133(44), 17832–17838 (2011)

    Article  CAS  Google Scholar 

  • C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub-3 nm Co3O4 Nanofilms with enhanced Supercapacitor properties. ACS Nano 9(2), 1730–1739 (2015)

    Article  CAS  Google Scholar 

  • N. Feng, R. Meng, L. Zu, Y. Feng, C. Peng, J. Huang, G. Liu, B. Chen, J. Yang, A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat. Commun. 10(1), 1372 (2019)

    Article  CAS  Google Scholar 

  • Finello, D. (1995) New developments in Ultracapacitor technology

    Google Scholar 

  • M. Gao, W.-K. Wang, Q. Rong, J. Jiang, Y.-J. Zhang, H.-Q. Yu, Porous ZnO-coated Co3O4 Nanorod as a high-energy-density Supercapacitor material. ACS Appl. Mater. Interfaces 10(27), 23163–23173 (2018)

    Article  CAS  Google Scholar 

  • X. Geng, Y. Zhang, Y. Han, J. Li, L. Yang, M. Benamara, L. Chen, H. Zhu, Two-dimensional water-coupled metallic MoS2 with Nanochannels for ultrafast Supercapacitors. Nano Lett. 17(3), 1825–1832 (2017)

    Article  CAS  Google Scholar 

  • D. Ghosh, C.K. Das, Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: A high-energy-density aqueous asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 7(2), 1122–1131 (2015)

    Article  CAS  Google Scholar 

  • Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials – Capacitive, Pseudocapacitive, or battery-like? ACS Nano 12(3), 2081–2083 (2018)

    Article  CAS  Google Scholar 

  • B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid Supercapacitors. Adv. Mater. 29(6), 1605051 (2017)

    Article  CAS  Google Scholar 

  • H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid Supercapacitor with an Anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500–1506 (2013)

    Article  CAS  Google Scholar 

  • H.-G. Kim, H. Shin, Y.H. Ha, R. Kim, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, Triplet harvesting by a fluorescent emitter using a phosphorescent sensitizer for blue organic-light-emitting diodes. ACS Appl. Mater. Interfaces 11(1), 26–30 (2019)

    Article  CAS  Google Scholar 

  • L. Kong, C. Zhang, S. Zhang, J. Wang, R. Cai, C. Lv, W. Qiao, L. Ling, D. Long, High-power and high-energy asymmetric supercapacitors based on Li+−intercalation into a T-Nb2O5/graphene pseudocapacitive electrode. J. Mater. Chem. A 2(42), 17962–17970 (2014)

    Article  CAS  Google Scholar 

  • L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation Pseudocapacitor. ACS Nano 9(11), 11200–11208 (2015)

    Article  CAS  Google Scholar 

  • L. Kong, X. Cao, J. Wang, W. Qiao, L. Ling, D. Long, Revisiting Li+ intercalation into various crystalline phases of Nb2O5 anchored on graphene sheets as pseudocapacitive electrodes. J. Power Sources 309, 42–49 (2016)

    Article  CAS  Google Scholar 

  • X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232–236 (2011)

    Article  CAS  Google Scholar 

  • J. Lee, H. Jeong, R. Lassarote Lavall, A. Busnaina, Y. Kim, Y.J. Jung, H. Lee, Polypyrrole films with micro/Nanosphere shapes for electrodes of high-performance Supercapacitors. ACS Appl. Mater. Interfaces 9(38), 33203–33211 (2017)

    Article  CAS  Google Scholar 

  • L. Li, Y. Zhang, H. Lu, Y. Wang, J. Xu, J. Zhu, C. Zhang, T. Liu, Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11(1), 62 (2020)

    Article  CAS  Google Scholar 

  • X. Li, L. Zhao, T. He, M. Zhang, Z. Wang, B. Zhang, X. Weng, Highly conductive, hierarchical porous ultra-fine carbon fibers derived from polyacrylonitrile/polymethylmethacrylate/needle coke as binder-free electrodes for high-performance supercapacitors. J. Power Sources 521, 230943 (2022)

    Article  CAS  Google Scholar 

  • Z. Ling, E. Ren Chang, M.-Q. Zhao, J. Yang, M. Giammarco James, J. Qiu, W. Barsoum Michel, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014)

    Article  CAS  Google Scholar 

  • X. Liu, P. Carvalho, M.N. Getz, T. Norby, A. Chatzitakis, Black Anatase TiO2 nanotubes with Tunable orientation for high performance Supercapacitors. J. Phys. Chem. C 123(36), 21931–21940 (2019)

    Article  CAS  Google Scholar 

  • X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for Supercapacitors. Nano Lett. 12(3), 1690–1696 (2012)

    Article  CAS  Google Scholar 

  • R. Lukatskaya Maria, O. Mashtalir, E. Ren Chang, Y. Dall’Agnese, P. Rozier, L. Taberna Pierre, M. Naguib, P. Simon, W. Barsoum Michel, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013)

    Article  CAS  Google Scholar 

  • G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J. Power Sources 229, 72–78 (2013)

    Article  CAS  Google Scholar 

  • Z. Meng, W. Yan, M. Zou, H. Miao, F. Ma, A.B. Patil, R. Yu, X. Yang Liu, N. Lin, Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 583, 722–733 (2021)

    Article  CAS  Google Scholar 

  • M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014)

    Article  CAS  Google Scholar 

  • Q. Pan, F. Zheng, D. Deng, B. Chen, Y. Wang, Interlayer spacing regulation of NiCo-LDH Nanosheets with ultrahigh specific capacity for battery-type Supercapacitors. ACS Appl. Mater. Interfaces 13(47), 56692–56703 (2021)

    Article  CAS  Google Scholar 

  • H. Pang, S.J. Ee, Y. Dong, X. Dong, P. Chen, TiN@VN nanowire arrays on 3D carbon for high-performance Supercapacitors. ChemElectroChem 1(6), 1027–1030 (2014)

    Article  CAS  Google Scholar 

  • M. Sathiya, A.S. Prakash, K. Ramesha, J.M. Tarascon, A.K. Shukla, V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 133(40), 16291–16299 (2011)

    Article  CAS  Google Scholar 

  • Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric Supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018)

    Article  CAS  Google Scholar 

  • L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24(18), 2630–2637 (2014)

    Article  CAS  Google Scholar 

  • L. Shen, L. Yu, H.B. Wu, X.-Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6(1), 6694 (2015)

    Article  CAS  Google Scholar 

  • P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and Supercapacitors begin? Science 343(6176), 1210–1211 (2014)

    Article  CAS  Google Scholar 

  • W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: The origin of large capacitance. J. Phys. Chem. B 109(15), 7330–7338 (2005)

    Article  CAS  Google Scholar 

  • M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004)

    Article  CAS  Google Scholar 

  • S. Trasatti, G. Buzzanca, Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. J. Electroanal. Chem. Interfacial Electrochem. 29(2), A1–A5 (1971)

    Article  Google Scholar 

  • Y. Wang, W. Yang, C. Chen, D.G. Evans, Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. J. Power Sources 184(2), 682–690 (2008)

    Article  CAS  Google Scholar 

  • G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    Article  CAS  Google Scholar 

  • W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011)

    Article  CAS  Google Scholar 

  • X. **ao, X. Peng, H. **, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo, J. Zhou, Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state Supercapacitors. Adv. Mater. 25(36), 5091–5097 (2013)

    Article  CAS  Google Scholar 

  • Z. **ao, L. Fan, B. Xu, S. Zhang, W. Kang, Z. Kang, H. Lin, X. Liu, S. Zhang, D. Sun, Green fabrication of ultrathin Co3O4 Nanosheets from metal–organic framework for robust high-rate Supercapacitors. ACS Appl. Mater. Interfaces 9(48), 41827–41836 (2017)

    Article  CAS  Google Scholar 

  • Y. Xu, J. Wang, B. Ding, L. Shen, H. Dou, X. Zhang, General strategy to fabricate ternary metal nitride/carbon nanofibers for Supercapacitors. ChemElectroChem 2(12), 2020–2026 (2015)

    Article  CAS  Google Scholar 

  • G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, In situ transformation of MOFs into layered double hydroxide embedded metal Sulfides for improved Electrocatalytic and Supercapacitive performance. Adv. Mater. 29(26), 1606814 (2017)

    Article  CAS  Google Scholar 

  • C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 19(32), 5772–5777 (2009)

    Article  CAS  Google Scholar 

  • Y. Zang, H. Luo, H. Zhang, H. Xue, Polypyrrole nanotube-interconnected NiCo-LDH Nanocages derived by ZIF-67 for Supercapacitors. ACS Appl. Energy Mater. 4(2), 1189–1198 (2021)

    Article  CAS  Google Scholar 

  • F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J. Power Sources 203, 250–256 (2012)

    Article  CAS  Google Scholar 

  • F. Zhang, C. Yuan, J. Zhu, J. Wang, X. Zhang, X.W. Lou, Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 23(31), 3909–3915 (2013)

    Article  CAS  Google Scholar 

  • P. Zhang, B.Y. Guan, L. Yu, X.W. Lou, Formation of double-shelled zinc–cobalt Sulfide dodecahedral cages from bimetallic Zeolitic Imidazolate frameworks for hybrid Supercapacitors. Angew. Chem. Int. Ed. 56(25), 7141–7145 (2017)

    Article  CAS  Google Scholar 

  • M.-Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015)

    Article  CAS  Google Scholar 

  • Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang, Y. Feng, K. Zeng, C.B. Parker, S. Zauscher, Y. Gogotsi, J.T. Glass, C. Cao, Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable Supercapacitors. ACS Nano 14(3), 3576–3586 (2020)

    Article  CAS  Google Scholar 

  • B.T. Zhu, Z. Wang, S. Ding, J.S. Chen, X.W. Lou, Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv. 1(3), 397–400 (2011)

    Article  CAS  Google Scholar 

  • Y. Zhu, H. Chen, S. Chen, C. Li, M. Fan, K. Shu, Sea urchin-like architectures and nanowire arrays of cobalt–manganese sulfides for superior electrochemical energy storage performance. J. Mater. Sci. 53(8), 6157–6169 (2018)

    Article  CAS  Google Scholar 

  • I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76(2), 323–410 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cao, J., Wang, W. (2022). Pseudocapacitive Materials. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation