Nanomaterials for Therapeutic Nucleic Acid Delivery

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Nucleic acids and their chemically modified derivatives have gradually become an important class of therapeutic agents. Several nucleic acid-based drugs have been applied to treat various diseases at the genetic level by regulating gene expression and protein translation. Despite these breakthroughs, delivery of nucleic acids to desired tissues and cell populations remains a challenge for clinical translation. To address the delivery issues, researchers have investigated many types of nanomaterials to encapsulate nucleic acids and overcome physiological barriers. Commonly used nanomaterials include polymers, lipids, cell-penetrating peptides (CPPs), inorganic nanomaterials, nucleic acid-based nanoparticles, and viruslike particles (VLPs), several of which have been approved for clinical use. This chapter presents an overview of therapeutic nucleic acids, highlights chemical modification strategies, and introduces representative nanomaterials which may facilitate clinical translation of therapeutic nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C, Maier M, Jayaprakash KN, Jayaraman M, Rajeev KG, Manoharan M (2009) Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol Ther 17:872–879

    Article  CAS  Google Scholar 

  • Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD (2019) The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol 14:1084–1087

    Article  CAS  Google Scholar 

  • Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ (2020) Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 383:2427–2438

    Article  CAS  Google Scholar 

  • Avitabile C, Cimmino A, Romanelli A (2014) Oligonucleotide analogues as modulators of the expression and function of noncoding RNAs (ncRNAs): emerging therapeutics applications. J Med Chem 57:10220–10240

    Article  CAS  Google Scholar 

  • Blakney AK, Mckay PF, Hu K, Samnuan K, Jain N, Brown A, Thomas A, Rogers P, Polra K, Sallah H (2021) Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Control Release 338:201–210

    Article  CAS  Google Scholar 

  • Chaplot SP, Rupenthal ID (2014) Dendrimers for gene delivery–a potential approach for ocular therapy? J Pharm Pharmacol 66:542–556

    Article  CAS  Google Scholar 

  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ (2020) Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and Crispr–Cas gene editing. Nat Nanotechnol 15:313–320

    Article  CAS  Google Scholar 

  • Das M, Musetti S, Huang L (2019) RNA interference-based cancer drugs: the roadblocks, and the “delivery” of the promise. Nucleic Acid Ther 29:61–66

    Article  CAS  Google Scholar 

  • Dong Y, Siegwart DJ, Anderson DG (2019) Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Del Rev 144:133–147

    Article  CAS  Google Scholar 

  • Fenton OS, Kauffman KJ, Mcclellan RL, Appel EA, Dorkin JR, Tibbitt MW, Heartlein MW, Derosa F, Langer R, Anderson DG (2016) Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv Mater 28:2939–2943

    Article  CAS  Google Scholar 

  • Galli M, Guerrini A, Cauteruccio S, Thakare P, Dova D, Orsini F, Arosio P, Carrara C, Sangregorio C, Lascialfari A (2017) Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Adv 7:15500–15512

    Article  CAS  Google Scholar 

  • Gilam A, Conde J, Weissglas-Volkov D, Oliva N, Friedman E, Artzi N, Shomron N (2016) Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat Commun 7:1–14

    Article  Google Scholar 

  • Goodman CM, Mccusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  Google Scholar 

  • Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  CAS  Google Scholar 

  • Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45:971–979

    Article  CAS  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  Google Scholar 

  • Hajj KA, Whitehead KA (2017) Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater 2:1–17

    Article  Google Scholar 

  • Han X, Zhang H, Butowska K, Swingle KL, Alameh M-G, Weissman D, Mitchell MJ (2021) An ionizable lipid toolbox for RNA delivery. Nat Commun 12:1–6

    Article  CAS  Google Scholar 

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

    Article  CAS  Google Scholar 

  • Heyes J, Palmer L, Bremner K, Maclachlan I (2005) Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release 107:276–287

    Article  CAS  Google Scholar 

  • Hou X, Zaks T, Langer R, Dong Y (2021) Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6:1078–1094

    Article  CAS  Google Scholar 

  • Hu Q, Li H, Wang L, Gu H, Fan C (2018) DNA nanotechnology-enabled drug delivery systems. Chem Rev 119:6459–6506

    Article  Google Scholar 

  • Hu M, Wang Y, Liu Z, Yu Z, Guan K, Liu M, Wang M, Tan J, Huang L (2021) Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nat Nanotechnol 16:466–477

    Article  CAS  Google Scholar 

  • Iwamoto N, Butler DC, Svrzikapa N, Mohapatra S, Zlatev I, Sah DW, Standley SM, Lu G, Apponi LH, Frank-Kamenetsky M (2017) Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat Biotechnol 35:845–851

    Article  CAS  Google Scholar 

  • Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair JK (2012) Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem 124:8657–8661

    Article  Google Scholar 

  • Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG (2013) Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett 13:1059–1064

    Article  CAS  Google Scholar 

  • Karlsson J, Rhodes KR, Green JJ, Tzeng SY (2020) Poly (beta-amino ester) s as gene delivery vehicles: challenges and opportunities. Expert Opin Drug Deliv 17:1395–1410

    Article  CAS  Google Scholar 

  • Kasinski AL, Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11:849–864

    Article  CAS  Google Scholar 

  • Kenski DM, Butora G, Willingham AT, Cooper AJ, Fu W, Qi N, Soriano F, Davies IW, Flanagan WM (2012) siRNA-optimized modifications for enhanced in vivo activity. Molec Ther-Nucleic Acids 1:e5

    Article  Google Scholar 

  • Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35:238–248

    Article  CAS  Google Scholar 

  • Kim M-H, Na H-K, Kim Y-K, Ryoo S-R, Cho HS, Lee KE, Jeon H, Ryoo R, Min D-H (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5:3568–3576

    Article  CAS  Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308

    Article  CAS  Google Scholar 

  • Koltover I, Salditt T, Rädler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281:78–81

    Article  CAS  Google Scholar 

  • Konate K, Crombez L, Deshayes S, Decaffmeyer M, Thomas A, Brasseur R, Aldrian G, Heitz F, Divita G (2010) Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery. Biochemistry 49:3393–3402

    Article  CAS  Google Scholar 

  • Konate K, Lindberg MF, Vaissiere A, Jourdan C, Aldrian G, Margeat E, Deshayes S, Boisguerin P (2016) Optimisation of vectorisation property: a comparative study for a secondary amphipathic peptide. Int J Pharm 509:71–84

    Article  CAS  Google Scholar 

  • Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, Van Der Meel R (2021) The current landscape of nucleic acid therapeutics. Nat Nanotechnol 16:630–643

    Article  CAS  Google Scholar 

  • Kunath K, Von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89:113–125

    Article  CAS  Google Scholar 

  • Lamichhane TN, Raiker RS, Jay SM (2015) Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm 12:3650–3657

    Article  CAS  Google Scholar 

  • Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    Article  CAS  Google Scholar 

  • Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M (2012a) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    Article  CAS  Google Scholar 

  • Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT (2012b) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11:316–322

    Article  CAS  Google Scholar 

  • Lee TJ, Haque F, Shu D, Yoo JY, Li H, Yokel RA, Horbinski C, Kim TH, Kim S-H, Kwon C-H (2015) RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget 6:14766

    Article  Google Scholar 

  • Li W, Nicol F, Szoka Jr FC (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985

    Article  CAS  Google Scholar 

  • Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C (2011) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789

    Article  CAS  Google Scholar 

  • Li B, Zhao W, Luo X, Zhang X, Li C, Zeng C, Dong Y (2017) Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat Biomed Eng 1:1–10

    Article  Google Scholar 

  • Li W, Zhang X, Zhang C, Yan J, Hou X, Du S, Zeng C, Zhao W, Deng B, Mccomb DW, Zhang Y, Kang DD, Li J, Carson Iii WE, Dong Y (2021) Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat Commun 12:1–12

    Article  Google Scholar 

  • Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, Xu Q, Wang M (2019) Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater 31:1902575

    Article  Google Scholar 

  • Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, Qin J, Cantley W, Qin LL, Racie T (2010) Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci 107:1864–1869

    Article  CAS  Google Scholar 

  • Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W, Tam YK, Ansell SM, Kumar V, Qin J (2013) Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther 21:1570–1578

    Article  CAS  Google Scholar 

  • Mockey M, Gonçalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P (2006) mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA cap** with Poly (A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun 340:1062–1068

    Article  CAS  Google Scholar 

  • Ostro MJ, Giacomoni D, Lavelle D, Paxton W, Dray S (1978) Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature 274:921–923

    Article  CAS  Google Scholar 

  • Patel S, Ryals RC, Weller KK, Pennesi ME, Sahay G (2019) Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Control Release 303:91–100

    Article  CAS  Google Scholar 

  • Patel S, Ashwanikumar N, Robinson E, **a Y, Mihai C, Griffith JP, Hou S, Esposito AA, Ketova T, Welsher K, Joyal JL, Almarsson Ö, Sahay G (2020) Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat Commun 11:1–13

    CAS  Google Scholar 

  • Paunovska K, Gil CJ, Lokugamage MP, Sago CD, Sato M, Lando GN, Gamboa Castro M, Bryksin AV, Dahlman JE (2018) Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano 12:8341–8349

    Article  CAS  Google Scholar 

  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Marc GP, Moreira ED, Zerbini C (2020) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383:2603

    Article  CAS  Google Scholar 

  • Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  • Roy P, Noad R (2008) Virus-like particles as a vaccine delivery system: myths and facts. Hum Vaccin 4:5–12

    Article  CAS  Google Scholar 

  • Sahin U, Karikó K, Türeci Ö (2014) mRNA-based therapeutics—develo** a new class of drugs. Nat Rev Drug Discov 13:759–780

    Article  CAS  Google Scholar 

  • Schuller VJ, Heidegger S, Sandholzer N, Nickels PC, Suhartha NA, Endres S, Bourquin C, Liedl T (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5:9696–9702

    Article  Google Scholar 

  • Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28:172–176

    Article  CAS  Google Scholar 

  • Shu D, Li H, Shu Y, **ong G, Carson Iii WE, Haque F, Xu R, Guo P (2015) Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9:9731–9740

    Article  CAS  Google Scholar 

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  Google Scholar 

  • Takeda YS, Wang M, Deng P, Xu Q (2016) Synthetic bioreducible lipid-based nanoparticles for miRNA delivery to mesenchymal stem cells to induce neuronal differentiation. Bioeng Transl Med 1:160–167

    Article  CAS  Google Scholar 

  • Tan J-KY, Sellers DL, Pham B, Pun SH, Horner PJ (2016) Non-viral nucleic acid delivery strategies to the central nervous system. Front Mol Neurosci 9:108

    Article  Google Scholar 

  • Tolstov YL, Pastrana DV, Feng H, Becker JC, Jenkins FJ, Moschos S, Chang Y, Buck CB, Moore PS (2009) Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer 125:1250–1256

    Article  CAS  Google Scholar 

  • Vaish N, Chen F, Seth S, Fosnaugh K, Liu Y, Adami R, Brown T, Chen Y, Harvie P, Johns R (2011) Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res 39:1823–1832

    Article  CAS  Google Scholar 

  • Vaissière A, Aldrian G, Konate K, Lindberg MF, Jourdan C, Telmar A, Seisel Q, Fernandez F, Viguier V, Genevois C (2017) A retro-inverso cell-penetrating peptide for siRNA delivery. J Nanobiotechnol 15:1–18

    Article  Google Scholar 

  • Van Gulck ER, Ponsaerts P, Heyndrickx L, Vereecken K, Moerman F, De Roo A, Colebunders R, Van Den Bosch G, Van Bockstaele DR, Van Tendeloo VF (2006) Efficient stimulation of HIV-1–specific T cells using dendritic cells electroporated with mRNA encoding autologous HIV-1 Gag and Env Proteins. Blood 107:1818–1827

    Article  Google Scholar 

  • Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12:237–251

    Article  CAS  Google Scholar 

  • Wang C, Zhang Y, Dong Y (2021) Lipid nanoparticle–mRNA formulations for therapeutic applications. Acc Chem Res 54:4283–4293

    Article  CAS  Google Scholar 

  • Wayne EC, Long C, Haney MJ, Batrakova EV, Leisner TM, Parise LV, Kabanov AV (2019) Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer. Adv Sci (Weinh) 6:1900582

    Article  CAS  Google Scholar 

  • Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, Fenton OS, Zhang Y, Olejnik KT, Yesilyurt V (2014) Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun 5:1–10

    Article  Google Scholar 

  • **ao Y, Shi J (2021) Lipids and the emerging RNA medicines. Chem Rev 121:12109–12111

    Article  CAS  Google Scholar 

  • **ao Y, Chen J, Zhou H, Zeng X, Ruan Z, Pu Z, Jiang X, Matsui A, Zhu L, Amoozgar Z, Chen DS, Han X, Duda DG, Shi J (2022) Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat Commun 13:1–14

    Article  Google Scholar 

  • Xue Y, Feng J, Liu Y, Che J, Bai G, Dong X, Wu F, ** T (2020) A synthetic carrier of nucleic acids structured as a neutral phospholipid envelope tightly assembled on polyplex surface. Adv Healthc Mater 9:1901705

    Article  CAS  Google Scholar 

  • Xue Y, Che J, Ji X, Li Y, **e J, Chen X (2022) Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 51(5):1766–1794

    Article  CAS  Google Scholar 

  • Yan J, Kang DD, Dong Y (2021) Harnessing lipid nanoparticles for efficient CRISPR delivery. Biomater Sci 9:6001–6011

    Article  CAS  Google Scholar 

  • Yang L, Ma F, Liu F, Chen J, Zhao X, Xu Q (2020) Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Molec Ther-Nucleic Acids 19:1357–1367

    Article  CAS  Google Scholar 

  • Yu GS, Bae YM, Choi H, Kong B, Choi IS, Choi JS (2011) Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency. Bioconjug Chem 22:1046–1055

    Article  CAS  Google Scholar 

  • Yue C, Chen J, Li Z, Li L, Chen J, Guo Y (2020) microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. J Exp Clin Cancer Res 39:1–15

    Article  CAS  Google Scholar 

  • Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W, Du S, Dong Y (2020) Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivo. Adv Mater 32:2004452

    Article  CAS  Google Scholar 

  • Zhang X, Zhao W, Nguyen GN, Zhang C, Zeng C, Yan J, Du S, Hou X, Li W, Jiang J, Deng B, Mccomb DW, Dorkin R, Shah A, Barrera L, Gregoire F, Singh M, Chen D, Sabatino DE, Dong Y (2020) Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci Adv 6:eabc2315

    Article  CAS  Google Scholar 

  • Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y (2021) Lipids and lipid derivatives for RNA delivery. Chem Rev 121:12181–12277

    Article  CAS  Google Scholar 

  • Zhao W, Zeng C, Yan J, Du S, Hou X, Zhang C, Li W, Deng B, Mccomb DW, Xue Y (2021) Construction of messenger RNA (mRNA) probes delivered by lipid nanoparticles to visualize intracellular protein expression and localization at organelles. Adv Mater 33:2103131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhou Dong .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Du, S., Cheng, J., Dong, Y. (2022). Nanomaterials for Therapeutic Nucleic Acid Delivery. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_100-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_100-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation