The Effect of Oxidative Nutritional Products on Cancer

Mechanistic aspects 

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects
  • 5 Accesses

Abstract

Medical anticancer drugs such as chemotherapy, radiation therapy, and photodynamic therapy kill cancer cells by inducing severe oxidative stress. However, many natural products with antioxidant properties have the ability to increase susceptibility of cancer cells to oxidative stress induced by chemotherapy and radiotherapy by regulating their antioxidant capacity as adjuvants, leading to kill them. In other words, by reducing the antioxidant defense capacity of tumor cells, the ability to balance redox is reduced, leading to cell death. However, depending on the concentration used, cell type, exposure time, and environmental conditions, the same natural compound may exert a pro-oxidant effect, producing activated oxygen and free radicals that cause oxidative damage to DNA. We would like to present a comprehensive list of natural compounds that inhibit the major pro-oxidant defense mechanisms of cancer cells and discuss their potentials of clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90(17):7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argyriou AA et al (2006) A randomized controlled trial evaluating the efficacy and safety of vitamin E supplementation for protection against cisplatin-induced peripheral neuropathy: final results. Support Care Cancer 14(11):1134–1140

    Article  PubMed  Google Scholar 

  • Arlt A et al (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32(40):4825–4835

    Article  CAS  PubMed  Google Scholar 

  • Baba CE et al (2021) Retinoids and reactive Oxygen species in cancer cell death and therapeutics. In: Handbook of oxidative stress and cancer, pp 1–22

    Google Scholar 

  • Balyan R et al (2015) Bioactivation of luteolin by tyrosinase selectively inhibits glutathione S-transferase. Chem Biol Interact 240:208–218

    Article  CAS  PubMed  Google Scholar 

  • Brechbuhl HM et al (2012) Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione. Toxicol Appl Pharmacol 258(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Carlisi D et al (2016) Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis 7:e2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Qian Y, Wu S (2015a) The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med 79:253–263

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2015b) Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP. Oncotarget 6(8):6406–6421

    Article  PubMed  PubMed Central  Google Scholar 

  • Chian S et al (2014) Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev 15(6):2911–2916

    Article  PubMed  Google Scholar 

  • Chou YC et al (2015) PEITC induces apoptosis of human brain glioblastoma GBM8401 cells through the extrinsic- and intrinsic -signaling pathways. Neurochem Int 81:32–40

    Article  CAS  PubMed  Google Scholar 

  • Crawford S (2014) Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: a new therapeutic approach to disease progression and recurrence. Ther Adv Med Oncol 6(2):52–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeNicola GM et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475(7354):106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el Attar TM, Lin HS (1992) Effect of vitamin C and vitamin E on prostaglandin synthesis by fibroblasts and squamous carcinoma cells. Prostaglandins Leukot Essent Fatty Acids 47(4):253–257

    Article  PubMed  Google Scholar 

  • Elbling L et al (2005) Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 19(7):807–809

    Article  CAS  PubMed  Google Scholar 

  • Evans JP et al (2018) The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget 9(43):27104–27116

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan J et al (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504):298–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald AL et al (2015) Reactive oxygen species and p21Waf1/Cip1 are both essential for p53-mediated senescence of head and neck cancer cells. Cell Death Dis 6:e1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517

    Article  CAS  PubMed  Google Scholar 

  • Furukawa-Hibi Y et al (2002) FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem 277(30):26729–26732

    Article  CAS  PubMed  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947

    Article  CAS  PubMed  Google Scholar 

  • Grober U (2009) Antioxidants and other micronutrients in complementary oncology. Breast Care (Basel) 4(1):13–20

    Article  Google Scholar 

  • Hail N Jr, Kim HJ, Lotan R (2006) Mechanisms of fenretinide-induced apoptosis. Apoptosis 11(10):1677–1694

    Article  CAS  PubMed  Google Scholar 

  • Harvie M (2014) Nutritional supplements and cancer: potential benefits and proven harms. Am Soc Clin Oncol Educ Book:e478–e486

    Google Scholar 

  • Hasanain M et al (2015) Alpha-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway. Cell Death Dis 6:e1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21(13)

    Google Scholar 

  • Hirsch K et al (2000) Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation. Nutr Cancer 38(2):245–254

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320(5876):661–664

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar S et al (2017) Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity. Free Radic Biol Med 113:530–538

    Article  CAS  PubMed  Google Scholar 

  • Jozwiak P et al (2015) Effect of glucose on GLUT1-dependent intracellular ascorbate accumulation and viability of thyroid cancer cells. Nutr Cancer 67(8):1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Kadara H et al (2007) Induction of endoplasmic reticulum stress by the pro-apoptotic retinoid N-(4-hydroxyphenyl)retinamide via a reactive oxygen species-dependent mechanism in human head and neck cancer cells. Cancer Biol Ther 6(5):705–711

    Article  CAS  PubMed  Google Scholar 

  • Kang KA et al (2017) Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol 51(4):1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Karathedath S et al (2017) Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS One 12(5):e0177227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3(3):221–227

    Article  CAS  PubMed  Google Scholar 

  • Khurana RK et al (2018) Administration of antioxidants in cancer: debate of the decade. Drug Discov Today 23(4):763–770

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ et al (2006) N-(4-hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of MAPKs in head and neck squamous carcinoma cells. Oncogene 25(19):2785–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein EA et al (2011) Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 306(14):1549–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren R et al (2001) Vitamin D is a prooxidant in breast cancer cells. Cancer Res 61(4):1439–1444

    CAS  PubMed  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L et al (2014) SIRT1 and SIRT2 inhibition impairs pediatric soft tissue sarcoma growth. Cell Death Dis 5:e1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madunic J et al (2018) Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett 413:11–22

    Article  CAS  PubMed  Google Scholar 

  • Maggioni D et al (2013) Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int J Oncol 43(5):1675–1682

    Article  CAS  PubMed  Google Scholar 

  • Maniam S et al (2015) Cofactor strap regulates oxidative phosphorylation and mitochondrial p53 activity through ATP synthase. Cell Death Differ 22(1):156–163

    Article  CAS  PubMed  Google Scholar 

  • Melnik BC (2017) p53: key conductor of all anti-acne therapies. J Transl Med 15(1):195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nogueira V et al (2008) Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14(6):458–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberley LW, Oberley TD, Buettner GR (1981) Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med Hypotheses 7(1):21–42

    Article  CAS  PubMed  Google Scholar 

  • Ogrunc M et al (2014) Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 21(6):998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnuma T et al (2011) Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract. Biochem Biophys Res Commun 413(4):623–629

    Article  CAS  PubMed  Google Scholar 

  • Onodera T, Momose I, Kawada M (2019) Potential anticancer activity of Auranofin. Chem Pharm Bull (Tokyo) 67(3):186–191

    Article  CAS  Google Scholar 

  • Pal S, Dey SK, Saha C (2014) Inhibition of catalase by tea catechins in free and cellular state: a biophysical approach. PLoS One 9(7):e102460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinnix ZK et al (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2(43):43ra56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Powolny AA, Singh SV (2008) Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharm Res 25(9):2171–2180

    Article  CAS  PubMed  Google Scholar 

  • Roy K et al (2015) NADPH oxidases and cancer. Clin Sci (Lond) 128(12):863–875

    Article  CAS  Google Scholar 

  • Sarvizadeh M et al (2021) Allicin and digestive system cancers: from chemical structure to its therapeutic opportunities. Front Oncol 11:650256

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayin VI et al (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6(221):221ra15

    Article  PubMed  CAS  Google Scholar 

  • Stepanic V et al (2015) Selected attributes of polyphenols in targeting oxidative stress in cancer. Curr Top Med Chem 15(5):496–509

    Article  CAS  PubMed  Google Scholar 

  • Su JC et al (2015) In vitro studies of phenethyl isothiocyanate against the growth of LN229 human glioma cells. Int J Clin Exp Pathol 8(4):4269–4276

    PubMed  PubMed Central  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798

    CAS  PubMed  Google Scholar 

  • Sznarkowska A et al (2017) Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 8(9):15996–16016

    Article  PubMed  Google Scholar 

  • Trachootham D et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D et al (2008) Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112(5):1912–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay K et al (2018) Low-dose doxorubicin with carotenoids selectively alters redox status and upregulates oxidative stress-mediated apoptosis in breast cancer cells. Food Chem Toxicol 118:675–690

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2013) Synergistic anti-glioma effect of hydroxygenkwanin and apigenin in vitro. Chem Biol Interact 206(2):346–355

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ et al (2018) Suppressive effects of EGCG on cervical cancer. Molecules 23(9)

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  • Wardman P (2001) Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr Med Chem 8(7):739–761

    Article  CAS  PubMed  Google Scholar 

  • Weijl NI et al (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40(11):1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Wu WJ et al (2013) Beta-phenylethyl isothiocyanate reverses platinum resistance by a GSH-dependent mechanism in cancer cells with epithelial-mesenchymal transition phenotype. Biochem Pharmacol 85(4):486–496

    Article  CAS  PubMed  Google Scholar 

  • Yang L et al (2011) Catalase suppression-mediated H(2)O(2) accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-kappaB activation and sensitizes apoptosis. Cancer Sci 102(4):870–876

    Article  CAS  PubMed  Google Scholar 

  • Yang H et al (2020) Luteolin induces mitochondrial apoptosis in HT29 cells by inhibiting the Nrf2/ARE signaling pathway. Exp Ther Med 19(3):2179–2187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J et al (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4(12):1406–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun J et al (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350(6266):1391–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2010) Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate. Free Radic Biol Med 49(12):2010–2018

    Article  CAS  PubMed  Google Scholar 

  • Zhang C et al (2016) NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 7(45):73593–73606

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Takayanagi, T. (2022). The Effect of Oxidative Nutritional Products on Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_253-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_253-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation