Architectures for Self-Powered Edge Intelligence

  • Living reference work entry
  • First Online:
Handbook of Computer Architecture

Abstract

Artificial intelligence (AI) and machine learning (ML)-based decision-making is proliferating to application spaces with dynamic and evolving inputs such as Internet of things (IoTs). The need for real-time decision-making in such applications requires the edge devices in IoT networks to possess in situ intelligence processing capability. Edge intelligence in the networks is critical to avert unpredictable latency of an otherwise cloud-based intelligence processing. Edge intelligence in IoTs also minimizes their energy demand by avoiding raw data transmission and better preserving data privacy by only transmitting actionable information. Meanwhile, due to form factor and cost constraints and battery-powered operation, the energy budget and computing/storage resources for edge intelligence are very limited in a typical IoT node. Addressing such computational challenges in IoTs, in this chapter, an architectural framework for self-powered edge intelligence is reviewed. First, architectural techniques are reviewed to exploit sensors in IoTs to harvest energy from their environment to sustain local intelligence processing. Next, architectures that can identify and focus on regions of interest (ROI) are discussed to exploit sparsity in input and to minimize edge intelligence workload. Finally, learning-based architectures are discussed to reduce power wastage, such as due to leakage power. With a synergistic integration of the above architectural techniques, many IoTs can leverage self-powered edge intelligence to heighten awareness of their application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal K, Deogun H, Sylvester D, Nowka K (2006) Power gating with multiple sleep modes. In: 7th international symposium on quality electronic design (ISQED’06). IEEE, p 5

    Google Scholar 

  • Akl CJ, Ayoubi RA, Bayoumi MA (2009) An effective staggered-phase dam** technique for suppressing power-gating resonance noise during mode transition. In: 2009 10th international symposium on quality electronic design. IEEE, pp 116–119

    Google Scholar 

  • Amazon Blink. https://www.amazon.com/stores/page/C5DECBBE-4F56-4C36-B933-E6214457 8691

  • Anandkumar A, Ge R, Hsu D, Kakade SM, Telgarsky M (2014) Tensor decompositions for learning latent variable models. J Mach Learn Res 15(80):2773–2832. [Online]. Available: http://jmlr.org/papers/v15/anandkumar14b.html

  • Arora S, Leighton T, Maggs B (1990) On-line algorithms for path selection in a nonblocking network. In: Proceedings of ACM symposium on theory of computing (STOC), pp 149–158

    Google Scholar 

  • Bank RE, Douglas CC (1993) Sparse matrix multiplication package (SMMP). Adv Comput Math 1:127–137

    Article  MathSciNet  Google Scholar 

  • Benezeth Y, Jodoin P-M, Emile B, Laurent H, Rosenberger C (2010) Comparative study of background subtraction algorithms. J Electron Imag 19(3):033003

    Article  Google Scholar 

  • Bennett J, Lanning S (2007) The Netflix prize. In: KDD cup and workshop in conjunction with KDD

    Google Scholar 

  • Boyapati R, Huang J, Wang N, Kim KH, Yum KH, Kim EJ (2017) Fly-over: a light-weight distributed power-gating mechanism for energy-efficient networks-on-chip. In: 2017 IEEE international parallel and distributed processing symposium (IPDPS). IEEE, pp 708–717

    Google Scholar 

  • Brutzer S, Höferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. In: IEEE CVPR, pp 1937–1944. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5995508

  • Cevik I, Huang X, Yu H, Yan M, Ay S (2015) An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability. Sensors 15(3):5531–5554. [Online]. Available: http://www.mdpi.com/1424-8220/15/3/5531/

  • Charania T, Opal A, Sachdev M (2012) Analysis and design of on-chip decoupling capacitors. IEEE Trans Very Large Scale Integr (VLSI) syst 21(4):648–658

    Article  Google Scholar 

  • Chefi A, Soudani A, Sicard G (2013) A CMOS image sensor with low-complexity video compression for wireless sensor networks. In: IEEE NEWCAS, pp 1–4. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6573591 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6573591

  • Chiou AY-C, Hsieh C-C (2015) A 0.4 V self-powered CMOS imager with 140 dB dynamic range and energy harvesting C86 C87, pp 86–87

    Google Scholar 

  • Dong L, ** C, Closson AB, Trase I, Richards HR, Chen Z, Zhang JX (2020a) Cardiac energy harvesting and sensing based on piezoelectric and triboelectric designs. Nano Energy 76:105076

    Article  Google Scholar 

  • Dong L, Closson AB, ** C, Nie Y, Cabe A, Escobedo D, Huang S, Trase I, Xu Z, Chen Z et al (2020b) Multifunctional pacemaker lead for cardiac energy harvesting and pressure sensing. Adv Healthcare Mater 9(11):2000053

    Article  Google Scholar 

  • Dunne MC, Potts RB (1964) Algorithm for traffic control. Oper Res 12(6):870–881

    Article  MathSciNet  Google Scholar 

  • Eisenstat SC, Elman HC, Schultz MH, Sherman AH (1984) The (new) Yale sparse matrix package. In: Elliptic Problem Solvers, vol 2, pp 45–52

    Article  MathSciNet  Google Scholar 

  • Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: ECCV, vol 1843, pp 751–767

    Google Scholar 

  • Fallah YP, Mansour H, Khan S (2008) A link adaptation scheme for efficient transmission. Circuits Syst Video Technol IEEE 18(7):875–887

    Article  Google Scholar 

  • Gao W, Hsu D, Lee WS, Shen S, Subramanian K (2017) Intention-Net: integrating planning and deep learning for goal-directed autonomous navigation, CoRR, vol. abs/1710.05627. [Online]. Available: http://arxiv.org/abs/1710.05627

  • Google Home. https://store.google.com/us/magazine/compare_nest_speakers_displays

  • Grasedyck L, Kressner D, Tobler C (2013) A literature survey of low-rank tensor approximation techniques

    Google Scholar 

  • Grois D, Hadar O (2014) Complexity-aware adaptive preprocessing scheme for region-of-interest spatial scalable video coding. IEEE Trans Circuits Syst Video Technol 24(6):1025–1039. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6727577

  • Grois D, Member S, Hadar O (2011) Efficient adaptive bit-rate control for scalable video coding by using computational complexity-rate-distortion analysis. In: The IEEE international symposium on broadband multimedia systems and broadcasting (BMSB)

    Google Scholar 

  • Gulcehre C, Denil M, Malinowski M, Razavi A, Pascanu R, Hermann KM, Battaglia P, Bapst V, Raposo D, Santoro A et al (2018) Hyperbolic attention networks, ar**v preprint ar**v:1805.09786

    Google Scholar 

  • Hampapur A, Brown L, Connell J, Pankanti S, Senior A, Tian Y (2003) Smart surveillance applications, technologies and implications.pdf. In: ICICS-FCM

    Google Scholar 

  • Han S, Mao H, Dally WJ (2016a) Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. In: International conference on learning representations (ICLR). [Online]. Available: http://arxiv.org/abs/1510.00149

  • Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016b) EIE: efficient inference engine on compressed deep neural network. In: Proceedings of international symposium on computer architecture (ISCA), pp 243–254

    Google Scholar 

  • Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016c) Eie: efficient inference engine on compressed deep neural network. ACM SIGARCH Comput Archit News 44(3):243–254

    Article  Google Scholar 

  • Hapla V, Horak D, Merta M (2013) Use of direct solvers in TFETI massively parallel implementation. Springer, Berlin/Heidelberg, pp 192–205

    Google Scholar 

  • Haratcherev L, Taal J (2005) Fast 802.11 link adaptation for real-time video streaming by cross-layer signaling. In: IEEE international symposium on circuits and systems. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1465389

  • Hegde K, Asghari-Moghaddam H, Pellauer M, Crago N, Jaleel A, Solomonik E, Emer J, Fletcher CW (2019) ExTensor: an accelerator for sparse tensor algebra. In: Proceedings of IEEE/ACM international symposium on microarchitecture (MICRO), pp 319–333

    Google Scholar 

  • Horowitz M. Energy table for 45 nm process, Stanford VLSI Wiki. [Online]. Available: https://sites.google.com/site/seecproject

  • Hu Z, Buyuktosunoglu A, Srinivasan V, Zyuban V, Jacobson H, Bose P (2004) Microarchitectural techniques for power gating of execution units. In: Proceedings of the 2004 international symposium on low power electronics and design, pp 32–37

    Google Scholar 

  • Hu Y, Meng F, Wang Y (2012) Improved JPEG compression algorithm based on saliency maps. In: CISP

    Book  Google Scholar 

  • Hu K-Y, Tsai C-H, Tsai C-W (2020) Digital v2 constant on-time control buck converter with adaptive voltage positioning and automatic calibration mechanism. IEEE Trans Power Electron 36: 7178–7188

    Article  Google Scholar 

  • Huang C, Lin C (2009) Multiple-priority region-of-interest H.264 video compression using constraint variable bitrate control for video surveillance. Opt Eng 48(4):047004. [Online]. Available: https://doi.org/10.1117/1.3120485

  • Imran M, Ahmad N, Khursheed K, Waheed MA, Lawal N, O’Nils M (2013) Implementation of wireless vision sensor node with a lightweight bi-level video coding. IEEE JETCAS 3(2):198–209

    Google Scholar 

  • Jiang H, Marek-Sadowska M, Nassif SR (2005) Benefits and costs of power-gating technique. In: 2005 international conference on computer design. IEEE, pp 559–566

    Google Scholar 

  • Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, Bates S, Bhatia S, Boden N, Borchers A, Boyle R, Cantin P, Chao C, Clark C, Coriell J, Daley M, Dau M, Dean J, Gelb B, Ghaemmaghami TV, Gottipati R, Gulland W, Hagmann R, Ho CR, Hogberg D, Hu J, Hundt R, Hurt D, Ibarz J, Jaffey A, Jaworski A, Kaplan A, Khaitan H, Killebrew D, Koch A, Kumar N, Lacy S, Laudon J, Law J, Le D, Leary C, Liu Z, Lucke K, Lundin A, MacKean G, Maggiore A, Mahony M, Miller K, Nagarajan R, Narayanaswami R, Ni R, Nix K, Norrie T, Omernick M, Penukonda N, Phelps A, Ross J, Ross M, Salek A, Samadiani E, Severn C, Sizikov G, Snelham M, Souter J, Steinberg D, Swing A, Tan M, Thorson G, Tian B, Toma H, Tuttle E, Vasudevan V, Walter R, Wang W, Wilcox E, Yoon DH (2017) In-datacenter performance analysis of a tensor processing unit. In: ACM/IEEE international symposium on computer architecture (ISCA), pp 1–12

    Google Scholar 

  • Kahng AB, Kang S, Rosing TS, Strong R (2013) Many-core token-based adaptive power gating. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(8):1288–1292

    Article  Google Scholar 

  • Kim C, Hwang J-N (2002) Fast and automatic video object segmentation and tracking for content-based applications. IEEE TCSVT 12(2):122–129. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=988659

  • Kim S, Kosonocky SV, Knebel DR (2003) Understanding and minimizing ground bounce during mode transition of power gating structures. In: Proceedings of the 2003 international symposium on low power electronics and design, pp 22–25

    Google Scholar 

  • Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground-background segmentation using codebook model. Real-Time Imag 11(3):172–185. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1077201405000057

  • Kim G, Lee Y, Foo Z, Pannuto P, Kuo YS, Kempke B, Ghaed MH, Bang S, Lee I, Kim Y, Jeong S, Dutta P, Sylvester D, Blaauw D (2014) A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting. In: IEEE symposium on VLSI circuits, digest of technical papers, no. Dec 2011, pp 31–32

    Google Scholar 

  • Ko JH, Mukhopadhyay S (2016) An energy-aware approach to noise-robust moving object detection for low-power wireless image sensor platforms. In: International symposium on low power electronics and design (ISLPED)

    Google Scholar 

  • Ko JH, Ahmed KZ, Amir MF, Na T, Mukhopadhyay S (2017) A single-chip image sensor node with energy harvesting from CMOS pixel array. IEEE Trans Circuits Syst I, Reg Papers64(9):2295–2307

    Google Scholar 

  • Ko JH, Mudassar BA, Mukhopadhyay S (2015) An energy-efficient wireless video sensor node for moving object surveillance. IEEE TMSCS 1(1):7–18

    Google Scholar 

  • Ko JH, Na T, Mukhopadhyay S (2016) An energy-efficient wireless video sensor node with a region-of-interest based multi-parameter rate controller for moving object surveillance. In: IEEE advanced video and signal-based surveillance (AVSS), pp 138–144

    Google Scholar 

  • Kung J, Park J, Park S, Kim J-J (2019) Peregrine: a flexible hardware accelerator for LSTM with limited synaptic connection patterns. In: Proceedings of the 56th annual design automation conference (DAC)

    Google Scholar 

  • Lai W, Gu X-D, Wang R-H, Dai L-R, Zhang H-J (2004) A region based multiple frame-rate tradeoff of video streaming. In: 2004 international conference on image processing, 2004. ICIP’04, vol 3, pp 2067–2070. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1421491

  • Law MK, Bermak A, Shi C (2011) A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme. IEEE Trans Circuits Syst II: Express Briefs 58(2):80–84

    Article  Google Scholar 

  • Lin X, Zhao C, Pan W (2017) Towards accurate binary convolutional neural network, ar**v preprint ar**v:1711.11294

    Google Scholar 

  • Liu T, Qi Y, Shi L, Yan J (2019) Locate-then-detect: real-time web attack detection via attention-based deep neural networks. In: IJCAI, pp 4725–4731

    Google Scholar 

  • Mattson T, Bader D, Berry J, Buluc A, Dongarra J, Faloutsos C, Feo J, Gilbert J, Gonzalez J, Hendrickson B, Kepner J, Leiserson C, Lumsdaine A, Padua D, Poole S, Reinhardt S, Stonebraker M, Wallach S, Yoo A (2013) Standards for graph algorithm primitives. In: IEEE high performance extreme computing conference (HPEC), pp 1–2

    Google Scholar 

  • McKenna SJ, Raja Y, Gong S (1999) Tracking colour objects using adaptive mixture models. Image Vis Comput 17(3–4):225–231. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0262885698001048

  • Meddeb M, Cagnazzo M, Pesquet-Popesc B (2014) Region-of-interest based rate control scheme for high efficiency video coding. In: APSIPA transactions on signal and information processing, pp 1–9

    Google Scholar 

  • Narasimman N, Salahuddin R, Singh RP (2020) An 86% efficiency multi-phase buck converter using time-domain compensator and adaptive dead-time control for DVS application. In: IECON 2020 the 46th annual conference of the IEEE industrial electronics society. IEEE, pp 2255–2260

    Google Scholar 

  • Nasrin S, Drobitch JL, Bandyopadhyay S, Trivedi AR (2019) Low power restricted boltzmann machine using mixed-mode magneto-tunneling junctions. IEEE Electron Device Lett 40(2):345–348

    Article  Google Scholar 

  • Nasrin S, Ramakrishna S, Tulabandhula T, Trivedi AR (2020) Supported-binarynet: bitcell array-based weight supports for dynamic accuracy-energy trade-offs in sram-based binarized neural network. In: 2020 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5

    Google Scholar 

  • Nasrin S, Badawi D, Cetin A, Gomes W, Trivedi AR (2021a) MF-Net: compute-in-memory sram for multibit precision inference using memory-immersed data conversion and multiplication-free operators. IEEE Trans Circuits Syst-I 68:1966–1978

    Article  Google Scholar 

  • Nasrin S, Shukla P, Jaisimha S, Trivedi AR (2021b) Compute-in-memory upside down: a learning operator co-design perspective for scalability. In: IEEE design automation and test in Europe (DATE)

    Google Scholar 

  • Naumov M, Mudigere D, Shi HM, Huang J, Sundaraman N, Park J, Wang X, Gupta U, Wu C, Azzolini AG, Dzhulgakov D, Mallevich A, Cherniavskii I, Lu Y, Krishnamoorthi R, Yu A, Kondratenko V, Pereira S, Chen X, Chen W, Rao V, Jia B, **ong L, Smelyanskiy M (2019) Deep learning recommendation model for personalization and recommendation systems, CoRR, vol. abs/1906.00091. [Online]. Available: http://arxiv.org/abs/1906.00091

  • Nayar SK, Sims DC, Fridberg M (2015) Towards self-powered cameras. In: 2015 IEEE international conference on computational photography (ICCP), pp 1–10

    Google Scholar 

  • Oliver NM, Rosario B, Pentland AP (2000) A bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8):831–843

    Article  Google Scholar 

  • Ordejon P (1998) Order-N tight-binding methods for electronic-structure and molecular dynamics. Comput Mater Sci 12(3):157–191

    Article  Google Scholar 

  • Pal S, Beaumont J, Park D, Amarnath A, Feng S, Chakrabarti C, Kim H, Blaauw D, Mudge T, Dreslinski R (2018) OuterSPACE: an outer product based sparse matrix multiplication accelerator. In: IEEE international symposium on high performance computer architecture (HPCA), pp 724–736

    Google Scholar 

  • Parashar A, Rhu M, Mukkara A, Puglielli A, Venkatesan R, Khailany B, Emer J, Keckler SW, Dally WJ (2017) SCNN: an accelerator for compressed-sparse convolutional neural networks. ACM SIGARCH Comput Archit News 45(2):27–40

    Article  Google Scholar 

  • Qin E, Samajdar A, Kwon H, Nadella V, Srinivasan S, Das D, Kaul B, Krishna T (2020) SIGMA: a sparse and irregular GEMM accelerator with flexible interconnects for DNN training. In: IEEE international symposium on high performance computer architecture (HPCA), pp 58–70

    Google Scholar 

  • Robinson HA, Cherry C (1967) Results of a prototype television bandwidth compression scheme. Proc IEEE 55(3):356–364

    Article  Google Scholar 

  • Shehata N, Hassanin AH, Elnabawy E, Nair R, Bhat SA, Kandas I (2020) Acoustic energy harvesting and sensing via electrospun pvdf nanofiber membrane. Sensors 20(11):3111

    Article  Google Scholar 

  • Shukla P, Muralidhar A, Iliev N, Tulabandhula T, Fuller SB, Trivedi AR (2021) Ultralow-power localization of insect-scale drones: interplay of probabilistic filtering and compute-in-memory. IEEE Trans Very Large Scale Integr (VLSI) Syst 30:68–80

    Article  Google Scholar 

  • Shylendra A, Shukla P, Mukhopadhyay S, Bhunia S, Trivedi AR (2020a) Low power unsupervised anomaly detection by nonparametric modeling of sensor statistics. IEEE Trans Very Large Scale Integr (VLSI) Syst 28(8):1833–1843

    Article  Google Scholar 

  • Shylendra A, Alizad SH, Shukla P, Trivedi AR (2020b) Non-parametric statistical density function synthesizer and monte carlo sampler in CMOS. In: 2020 33rd international conference on VLSI design and 2020 19th international conference on embedded systems (VLSID). IEEE, pp 19–24

    Google Scholar 

  • Singh M, Fayed AA (2020) A 1-a 6-mhz digitally assisted buck–boost converter with seamless mode transitions and fast dynamic performance for mobile devices. IEEE Trans Power Electron 36(4):4338–4351

    Article  Google Scholar 

  • Trivedi AR, Mukhopadhyay S (2012) Self-adaptive power gating with test circuit for on-line characterization of energy inflection activity. In: 2012 IEEE 30th VLSI test symposium (VTS). IEEE, pp 38–43

    Google Scholar 

  • Trivedi AR, Mukhopadhyay S (2014) Potential of ultralow-power cellular neural image processing with Si/Ge tunnel FET. IEEE Trans Nanotechnol 13(4):627–629

    Article  Google Scholar 

  • Trivedi AR, Amir MF, Mukhopadhyay S (2014a) Ultra-low power electronics with si/ge tunnel FET. In: 2014 design, automation & test in Europe conference & exhibition (DATE). IEEE, pp 1–6

    Google Scholar 

  • Trivedi AR, Yueh W, Mukhopadhyay S (2014b) In situ power gating efficiency learner for fine-grained self-adaptive power gating. IEEE Trans Circuits Syst II: Express Briefs 61(5):344–348

    Article  Google Scholar 

  • Trivedi A, Pandey R, Liu H, Datta S, Mukhopadhyay S (2015) Gate/source overlapped heterojunction tunnel FET for non-boolean associative processing with plasticity. In: 2015 IEEE international electron devices meeting (IEDM). IEEE, pp 17–8

    Google Scholar 

  • Tsapatsoulis N, Loizou C, Pattichis C (2007) Region of interest video coding for low bit-rate transmission of carotid ultrasound videos over 3G wireless networks. In: Annual international conference of the IEEE engineering in medicine and biology, pp 3717–3720

    Google Scholar 

  • Tuan M-C, Chen S-L (2015) Fully pipelined VLSI architecture of a real-time block-based object detector for intelligent video surveillance systems. In: 2015 IEEE/ACIS 14th international conference on computer and information science (ICIS), pp 149–154. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7166585

  • Uzun OA, Köse S (2014) Converter-gating: a power efficient and secure on-chip power delivery system. IEEE J Emerg Sel Top Circuits Syst 4(2):169–179

    Article  Google Scholar 

  • Vasudevan A, Anderson A, Gregg D (2017) Parallel multi channel convolution using general matrix multiplication. In: IEEE international conference on application-specific systems, architectures and processors (ASAP), pp 19–24

    Google Scholar 

  • Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks, ar**v preprint ar**v:1710.10903

    Google Scholar 

  • Wang H-T, Leon-Salas WD (2015) An image sensor with joint sensing and energy harvesting functions. IEEE Sens J 15(2):902–916. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6894563

  • Zhang S, Du Z, Zhang L, Lan H, Liu S, Li L, Guo Q, Chen T, Chen Y (2016) Cambricon-x: an accelerator for sparse neural networks. In: 2016 49th annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, pp 1–12

    Google Scholar 

  • Zhang Z, Wang H, Han S, Dally WJ (2020) SpArch: efficient architecture for sparse matrix multiplication. In: IEEE international symposium on high performance computer architecture (HPCA), pp 261–274

    Google Scholar 

  • Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc IEEE 107(8):1738–1762

    Article  Google Scholar 

  • Zohair M, Moyer K, Eaves-Rathert J, Meng C, Waugh J, Pint CL (2020) Continuous energy harvesting and motion sensing from flexible electrochemical nanogenerators: toward smart and multifunctional textiles. ACS Nano 14(2):2308–2315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Ranjan Trivedi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trivedi, A.R., Kung, J., Ko, J.H. (2022). Architectures for Self-Powered Edge Intelligence. In: Chattopadhyay, A. (eds) Handbook of Computer Architecture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6401-7_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6401-7_9-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6401-7

  • Online ISBN: 978-981-15-6401-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation