Ground-Based Reactive Gas Observations Within the Global Atmosphere Watch (GAW) Network

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

This chapter summarizes the surface-based WMO-GAW reactive gas measurement network; describes the currently adopted GAW techniques for nitrogen oxides (NOx), volatile organic compounds (VOCs), and surface ozone (O3); and presents brief summaries of recent GAW observations of these gases. Within GAW, there are currently nine sites performing continuous in situ measurements of nitrogen oxides using the recommended method of ozone chemiluminescence detection and NO2 photolytic conversion to NO. These sites, which are mostly in Europe except one station in Cape Verde, span a range of environmental conditions from the pristine marine background and free troposphere, to continental background, to continental air. Similarly, online continuous VOC measurements by gas chromatography (GC) are reported from 16 stations in 13 countries, mostly in Europe, with additional online PTR-MS measurements performed in Finland. Additional to these online measurements, flask measurements of VOCs are available within a globally distributed network of 29 stations in 22 countries for light alkanes (glass flasks) and for ~50 VOCs from 15 stations in 5 countries, mostly in Europe (steel flasks). The GAW ozone observation network is extensive and has continued to be an important resource for studies of tropospheric ozone’s global distribution, trends, and impact. An analysis within the framework of the Tropospheric Ozone Assessment Report (TOAR) of several mountaintop sites in remote areas of the Northern Hemisphere (most affiliated with GAW), updated for this chapter, shows that lower tropospheric ozone has generally increased since the 1970s and 1980s. The Global Burden of Disease (GBD) project, which provides regular estimates of global-scale premature death and disability including from poor air quality, fuses global ozone observations from the TOAR Database with output from several global models to calculate ozone exposure maps, an endeavor made possible by GAW observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleming Z, Doherty R, von Schneidemesser E, Malley C, Cooper O, Pinto J et al (2018) Tropospheric ozone assessment report: present-day ozone distribution and trends relevant to human health. Elementa 6. https://doi.org/10.1525/elementa.273

  2. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Chapter 8: Anthropogenic and natural radiative forcing. In: IPCC, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  3. WMO-GAW (2014) The Global Atmosphere Watch Programme: 25 years of global coordinated atmospheric composition observations and analyses. WMO Report No 171, WMO TD No 1373. https://library.wmo.int/doc_num.php?explnum_id=7886

  4. Schultz M, Schroder S, Lyapina O, Cooper O, Galbally I, Petropavlovskikh I et al (2017) Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elementa 5. https://doi.org/10.1525/elementa.244

  5. Helmig D, Rossabi S, Hueber J, Tans P, Montzka S, Masarie K et al (2016) Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nat Geosci 9(7):490–495. https://doi.org/10.1038/NGEO2721

    Article  Google Scholar 

  6. Dalsoren S, Myhre G, Hodnebrog O, Myhre C, Stohl A, Pisso I et al (2018) Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nat Geosci 11(3):178−+. https://doi.org/10.1038/s41561-018-0073-0

  7. Oltmans S, Lefohn A, Shadwick D, Harris J, Scheel H, Galbally I et al (2013) Recent tropospheric ozone changes – a pattern dominated by slow or no growth. Atmos Environ 67:331–351. https://doi.org/10.1016/j.atmosenv.2012.10.057

    Article  Google Scholar 

  8. Gaudel A, Cooper O, Ancellet G, Barret B, Boynard A, Burrows J et al (2018) Tropospheric ozone assessment report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa 6. https://doi.org/10.1525/elementa.291

  9. Cooper O, Schultz M, Schroder S, Chang K, Gaudel A, Benitez G et al (2020) Multi-decadal surface ozone trends at globally distributed remote locations. Elementa 8. https://doi.org/10.1525/elementa.420

  10. Schultz M, Akimoto H, Bottenheim J, Buchmann B, Galbally I, Gilge S et al (2015) The global atmosphere watch reactive gases measurement network. Elementa 3. https://doi.org/10.12952/journal.elementa.000067

  11. WMO-GAW (2017) WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023. GAW Report No. 228

    Google Scholar 

  12. WMO-GAW (2007) A WMO/GAW Expert Group Workshop on Global Long-term Measurements of Volatile Organic Compounds (VOCs). WMO Report No. 171, WMO TD No. 1373

    Google Scholar 

  13. WMO-GAW (2021) Guidelines for measurements of non-methane hydrocarbons (NMHCs) in the troposphere. Apel E, Baldan A, Claude A, Englert J, Fjaeraa A-M et al. (in press)

    Google Scholar 

  14. WMO-GAW (2021) NOx measurement guidelines (in preparation)

    Google Scholar 

  15. Thornton J, Wooldridge P, Cohen R (2000) Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios. Anal Chem 72(3):528–539. https://doi.org/10.1021/ac9908905

    Article  Google Scholar 

  16. Li Y, Demerjian K, Zahniser M, Nelson D, McManus J, Herndon S (2004) Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system. J Geophys Res-Atmos 109(D16). https://doi.org/10.1029/2003JD004091

  17. Tuzson B, Zeyer K, Steinbacher M, McManus J, Nelson D, Zahniser M et al (2013) Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy. Atmos Meas Tech 6(4):927–936. https://doi.org/10.5194/amt-6-927-2013

    Article  Google Scholar 

  18. Fuchs H, Dube W, Lerner B, Wagner N, Williams E, Brown S (2009) A sensitive and versatile detector for atmospheric NO2 and NOx based on blue diode laser cavity ring-down spectroscopy. Environ Sci Technol 43(20):7831–7836. https://doi.org/10.1021/es902067h

    Article  Google Scholar 

  19. Kebabian P, Wood E, Herndon S, Freedman A (2008) A practical alternative to chemiluminescence-based detection of nitrogen dioxide: cavity attenuated phase shift spectroscopy. Environ Sci Technol 42(16):6040–6045. https://doi.org/10.1021/es703204j

    Article  Google Scholar 

  20. Villena G, Bejan I, Kurtenbach R, Wiesen P, Kleffmann J (2011) Development of a new long path absorption photometer (LOPAP) instrument for the sensitive detection of NO2 in the atmosphere. Atmos Meas Tech 4(8):1663–1676. https://doi.org/10.5194/amt-4-1663-2011

    Article  Google Scholar 

  21. Clough P, Thrush B (1967) Mechanism of chemiluminescent reaction between nitric oxide and ozone. Trans Faraday Soc 63(532P):915. https://doi.org/10.1039/tf9676300915

    Article  Google Scholar 

  22. Drummond JW, Volz A, Ehhalt DH (1985) An optimized chemiluminescence detector for tropospheric NO measurements. J Atmos Chem 2(3):287–306

    Article  Google Scholar 

  23. Reed C, Evans MJ, Carlo PD, Lee JD, Carpenter LJ (2016) Interferences in photolytic NO 2 measurements: explanation for an apparent missing oxidant? Atmos Chem Phys 16(7):4707–4724

    Article  Google Scholar 

  24. Andersen ST, Carpenter LJ, Nelson BS, Neves L, Read KA, Reed C et al (2021) Long-term NOx measurements in the remote marine tropical troposphere. Atmos Meas Tech 14(4):3071–3085. https://doi.org/10.5194/amt-14-3071-2021

    Article  Google Scholar 

  25. Steinbacher M, Zellweger C, Schwarzenbach B, Bugmann S, Buchmann B, Ordonez C et al (2007) Nitrogen oxide measurements at rural sites in Switzerland: bias of conventional measurement techniques. J Geophys Res-Atmos 112(D11). https://doi.org/10.1029/2006JD007971

  26. Kley D, McFarland M (1980) Chemiluminescence detector for NO and NO2. Atmos Technol:12:63–69

    Google Scholar 

  27. Ryerson T, Williams E, Fehsenfeld F (2000) An efficient photolysis system for fast-response NO2 measurements. J Geophys Res-Atmos 105(D21):26447–26461. https://doi.org/10.1029/2000JD900389

    Article  Google Scholar 

  28. Pollack I, Lerner B, Ryerson T (2010) Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis – chemiluminescence. J Atmos Chem 65(2–3):111–125. https://doi.org/10.1007/s10874-011-9184-3

    Article  Google Scholar 

  29. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210. https://doi.org/10.5194/acp-6-3181-2006

    Article  Google Scholar 

  30. Cabrera-Perez D, Taraborrelli D, Sander R, Pozzer A (2016) Global atmospheric budget of simple monocyclic aromatic compounds. Atmos Chem Phys 16(11):6931–6947. https://doi.org/10.5194/acp-16-6931-2016

    Article  Google Scholar 

  31. Safieddine S, Heald C, Henderson B (2017) The global nonmethane reactive organic carbon budget: a modeling perspective. Geophys Res Lett 44(8):3897–3906. https://doi.org/10.1002/2017GL072602

    Article  Google Scholar 

  32. Chen X, Millet D, Singh H, Wisthaler A, Apel E, Atlas E et al (2019) On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmos Chem Phys 19(14):9097–9123. https://doi.org/10.5194/acp-19-9097-2019

    Article  Google Scholar 

  33. Rappengluck B, Apel E, Bauerfeind M, Bottenheim J, Brickell P, Cavolka P et al (2006) The first VOC intercomparison exercise within the global atmosphere watch (GAW). Atmos Environ 40(39):7508–7527. https://doi.org/10.1016/j.atmosenv.2006.07.016

    Article  Google Scholar 

  34. Pozzer A, Pollmann J, Taraborrelli D, Jockel P, Helmig D, Tans P et al (2010) Observed and simulated global distribution and budget of atmospheric C-2-C-5 alkanes. Atmos Chem Phys 10(9):4403–4422. https://doi.org/10.5194/acp-10-4403-2010

  35. **. J Chromatogr A 677(1):123–132. https://doi.org/10.1016/0021-9673(94)80551-2

  36. de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26(2):223–257. https://doi.org/10.1002/mas.20119

  37. Platt U, Stutz J (2008) Differential optical absorption spectroscopy: principles and applications. Springer

    Google Scholar 

  38. Rappengluck B, Apel E, Bauerfeind M, Bottenheim J, Brickell P, Cavolka P, et al. The first VOC intercomparison exercise within the Global Atmosphere Watch (GAW). Atmospheric Environment. 2006;40(39):7508–27. https://doi.org/10.1016/j.atmosenv.2006.07.016

  39. Steinbrecher R Atmospheric measurements of volatile organic compounds at monitoring stations. Online training session MetClimVOC2021, http://www.metclimvoc.eu/training.html. Last accessed May 2021

  40. Tarasick D, Galbally I, Cooper O, Schultz M, Ancellet G, Leblanc T et al (2019) Tropospheric ozone assessment report: tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa 7. https://doi.org/10.1525/elementa.376

  41. Bowman LD, Horak RF (1972) Continuous ultraviolet absorption ozone photometer. In: Chapman RL, McNeill GA, Bartz AM (eds) Analysis instrumentation. Instrument Society of America, pp 103–108

    Google Scholar 

  42. Petzold A, Thouret V, Gerbig C, Zahn A, Brenninkmeijer C, Gallagher M et al (2015) Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus Ser B-Chem Phys Meteorol 67. https://doi.org/10.3402/tellusb.v67.28452

  43. Galbally IE, Schultz MG, Buchmann B, Gilge S, Guenther F, Koide H et al (2013) Guidelines for continuous measurement of ozone in the troposphere, GAW Report No 209, Publication WMO-No 1110. World Meteorological Organisation, Geneva

    Google Scholar 

  44. Kaiser A, Schelfinger H, Spangl W, Weiss A, Gilge S, Fricke W et al (2007) Transport of nitrogen oxides, carbon monoxide and ozone to the Alpine Global Atmosphere Watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia). Atmos Environ 41(40):9273–9287. https://doi.org/10.1016/j.atmosenv.2007.09.027

    Article  Google Scholar 

  45. Cristofanelli P, Scheel H, Steinbacher M, Saliba M, Azzopardi F, Ellul R et al (2015) Long-term surface ozone variability at Mt. Cimone WMO/GAW global station (2165 m a.s.l., Italy). Atmos Environ 101:23–33. https://doi.org/10.1016/j.atmosenv.2014.11.012

    Article  Google Scholar 

  46. Sofen E, Bowdalo D, Evans M (2016) How to most effectively expand the global surface ozone observing network. Atmos Chem Phys 16(3):1445–1457. https://doi.org/10.5194/acp-16-1445-2016

    Article  Google Scholar 

  47. Xu W, Lin W, Xu X, Tang J, Huang J, Wu H et al (2016) Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – part 1: overall trends and characteristics. Atmos Chem Phys 16(10):6191–6205. https://doi.org/10.5194/acp-16-6191-2016

    Article  Google Scholar 

  48. Cristofanelli P, Fierli F, Graziosi F, Steinbacher M, Couret C, Calzolari F et al (2020) Decadal O-3 variability at the Mt. Cimone WMO/GAW global station (2,165 m a.s.l., Italy) and comparison with two high-mountain “reference” sites in Europe. Elementa 8(1). https://doi.org/10.1525/elementa.00042

  49. Cristofanelli P, Putero D, Bonasoni P, Busetto M, Calzolari F, Camporeale G et al (2018) Analysis of multi-year near-surface ozone observations at the WMO/GAW “Concordia” station (75 degrees 06′ S, 123 degrees 20′ E, 3280 m a.s.l. – Antarctica). Atmos Environ 177:54–63. https://doi.org/10.1016/j.atmosenv.2018.01.007

    Article  Google Scholar 

  50. Liu N, Ma J, Xu W, Wang Y, Pozzer A, Lelieveld J (2020) A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China. Atmos Environ 242. https://doi.org/10.1016/j.atmosenv.2020.117672

  51. Griffiths P, Murray L, Zeng G, Shin Y, Abraham N, Archibald A et al (2021) Tropospheric ozone in CMIP6 simulations. Atmos Chem Phys 21(5):4187–4218. https://doi.org/10.5194/acp-21-4187-2021

    Article  Google Scholar 

  52. Chang K, Cooper O, West J, Serre M, Schultz M, Lin M et al (2019) A new method (M(3)Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution. Geosci Model Dev 12(3):955–978. https://doi.org/10.5194/gmd-12-955-2019

    Article  Google Scholar 

  53. Murray C, Aravkin A, Zheng P, Abbafati C, Abbas K, Abbasi-Kangevari M et al (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258):1223–1249

    Article  Google Scholar 

  54. DeLang M, Becker J, Chang K, Serre M, Cooper O, Schultz M et al (2021) Map** yearly fine resolution global surface ozone through the Bayesian maximum entropy data fusion of observations and model output for 1990–2017. Environ Sci Technol 55(8):4389–4398. https://doi.org/10.1021/acs.est.0c07742

    Article  Google Scholar 

  55. Gaudel A, Cooper O, Chang K, Bourgeois I, Ziemke J, Strode S et al (2020) Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Sci Adv 6(34). https://doi.org/10.1126/sciadv.aba8272

  56. Wang T, Dai J, Lam K, Nan Poon C, Brasseur G (2019) Twenty-five years of lower tropospheric ozone observations in tropical East Asia: the influence of emissions and weather patterns. Geophys Res Lett 46(20):11463–11470. https://doi.org/10.1029/2019GL084459

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the EBAS data infrastructure at NILU (www.ebas.nilu.no) for hosting the observational data. We would also like to thank the GAW framework and the data originators: the Swiss National Air Quality Monitoring Network NABEL (FOEN/Empa) and Martin Steinbacher for providing data from the JFJ, RIG, and PAY stations; Dagmar Kubistin, Anja Claude, Christian Plass-Dülmer, Stefan Gilge, and Robert Holla from the Meteorological Observatory Hohenpeissenberg for the HPB data; Ronald Spoor and Mirian Wietses from the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) for the KMN data; Jgor Arduini and Michela Maione from the Institute for Atmospheric Science and Climate – National Research Council of Italy (CNR-ISAC) – CAMM Monte Cimone for the CMN data; Karri Saarnio, Hannele Hakola, Heidi Hellén, Timo Anttila, and Matti Monto from the Finnish Meteorological Institute (FMI) for the PAL data; and Simone Andersen and James Lee from the University of York for the CVO data. In addition, we thank Martin Steinbacher, Detlev Helmig, Kjetil Tørseth, and Paul Young of the WMO-GAW Reactive Gases Scientific Advisory Group and Sverre Solberg for helpful comments on this chapter. O. R. Cooper was supported by the NOAA Cooperative Agreement with CIRES, NA17OAR4320101. I. J. Simpson was supported by NASA, grant # NNX16AK04G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy J. Carpenter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Carpenter, L.J., Simpson, I.J., Cooper, O.R. (2023). Ground-Based Reactive Gas Observations Within the Global Atmosphere Watch (GAW) Network. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_8

Download citation

Publish with us

Policies and ethics

Navigation