Ground-Based Remote Sensing Measurements of Carbon Monoxide (CO) Using Fourier Transform Infrared (FT-IR) Spectrometry

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change
  • 501 Accesses

Abstract

Carbon monoxide (CO) in the atmosphere is an important atmospheric chemical tracer of pollution, indicating how transport processes distribute pollutants on a regional to global scales, while also influencing atmospheric chemistry. In addition to in situ measurements, CO concentrations can be inferred using remote sensing techniques, yielding total atmospheric column concentrations or volume mixing ratio (VMR) profiles over a range of altitudes. Total columns and mixing ratio profiles can represent sources over larger regions, complementing in situ measurements, which are more sensitive to localized sources. Remote sensing measurements of CO can therefore aid in identifying and characterizing pollution sources such as biomass burning and enhanced fossil fuel combustion when combined with backward trajectories, model simulations, and other remote sensing products. In this chapter, techniques and applications of ground-based remote sensing measurements of CO using Fourier Transform Infrared (FT-IR) spectrometry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Crutzen PJ, Zimmermann PH (1991) The changing photochemistry of the troposphere. Tellus B 43(4)

    Google Scholar 

  2. Velazco V, Notholt J, Warneke T, Lawrence M, Bremer H, Drummond J, Schulz A, Krieg J, Schrems O (2005) Latitude and altitude variability of carbon monoxide in the Atlantic detected from ship-borne Fourier transform spectrometry, model, and satellite data. J Geophys Res Atmos 110(D9)

    Google Scholar 

  3. Stremme W, Grutter M, Rivera C, Bezanilla A, Garcia AR, Ortega I, George M, Clerbaux C, Coheur P-F, Hurtmans D, Hannigan JW, Coffey MT (2013) Top-down estimation of carbon monoxide emissions from the Mexico Megacity based on FTIR measurements from ground and space. Atmos Chem Phys 13(3):1357–1376

    Article  Google Scholar 

  4. John SS, Deutscher NM, Paton-Walsh C, Velazco VA, Jones NB, Griffith DWT (2021) 2019–20 Australian bushfires and anomalies in carbon monoxide surface and column measurements. Atmosphere 12(6)

    Google Scholar 

  5. Franklin JE, Drummond JR, Griffin D, Pierce JR, Waugh DL, Palmer PI, Parrington M, Lee JD, Lewis AC, Rickard AR, Taylor JW, Allan JD, Coe H, Walker KA, Chisholm L, Duck TJ, Hopper JT, Blanchard Y, Gibson MD, Curry KR, Sakamoto KM, Lesins G, Dan L, Kliever J, Saha A (2014) A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment. Atmos Chem Phys 14(16):8449–8460

    Article  Google Scholar 

  6. Velazco V, Morino I, Uchino O, Deutscher N, Bukosa B, Belikov D, Oishi Y, Nakajima T, Macatangay R, Nakatsuru T, Maksyutov S, Schwandner F, Griffith D (2017) Total carbon column observing network Philippines: toward quantifying atmospheric carbon in Southeast Asia. Clim Disaster Dev J 2:1–12

    Article  Google Scholar 

  7. Pougatchev NS, Rinsland CP (1995) Spectroscopic study of the seasonal variation of carbon monoxide vertical distribution above Kitt Peak. J Geophys Res 100(D1)

    Google Scholar 

  8. Wunch D, Toon GC, Blavier J-FL, Washenfelder RA, Notholt J, Connor BJ, Griffith DWT, Sherlock V, Wennberg PO (2011) The total carbon column observing network. Philos Trans R Soc Lond A Math Phys Eng Sci 369(1943):2087–2112

    Google Scholar 

  9. De Mazière M, Thompson AM, Kurylo MJ, Wild JD, Bernhard G, Blumenstock T, Braathen GO, Hannigan JW, Lambert JC, Leblanc T, McGee TJ, Nedoluha G, Petropavlovskikh I, Seckmeyer G, Simon PC, Steinbrecht W, Strahan SE (2018) The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives

    Google Scholar 

  10. Hase F, Frey M, Kiel M, Blumenstock T, Harig R, Keens A, Orphal J (2016) Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements. Atmos Measur Tech 9(5)

    Google Scholar 

  11. Frey M, Sha MK, Hase F, Kiel M, Blumenstock T, Harig R, Surawicz G, Deutscher NM, Shiomi K, Franklin JE, Bösch H, Chen J, Grutter M, Ohyama H, Sun Y, Butz A, Mengistu Tsidu G, Ene D, Wunch D, Cao Z, Garcia O, Ramonet M, Vogel F, Orphal J (2019) Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos Measur Tech

    Google Scholar 

  12. Toon GC, Farmer CB, Schaper PW, Blavier JF, Lowes LL (1989) Ground-based infrared measurements of tropospheric source gases over Antarctica during the 1986 austral spring. J Geophys Res 94(D9)

    Google Scholar 

  13. Michelson AA, Morley EW (1887) On the relative motion of the Earth and the luminiferous ether. Am J Sci s3–34(203)

    Google Scholar 

  14. Rinsland CP, Smith MAH, Rinsland PL, Goldman A, Brault JW, Stokes GM (1982) Ground-based infrared spectroscopic measurements of atmospheric hydrogen cyanide. J Geophys Res 87(C13)

    Google Scholar 

  15. Goldman A, Fernald FG, Murcray FJ, Murcray FH, Murcray DG (1983) Spectral least squares quantification of several atmospheric gases from high resolution infrared solar spectra obtained at the South Pole. J Quant Spectrosc Radiat Transf 29(3)

    Google Scholar 

  16. Goldman A, Murcray FJ, Murcray FH, Murcray DG, Rinsland CP (1988) Quantification of several atmospheric gases from high resolution infrared solar spectra obtained at the south pole in 1980 and 1986. Mikrochimica Acta 95(1–6)

    Google Scholar 

  17. Rinsland CP, Jones NB, Connor BJ, Logan JA, Pougatchev NS, Goldman A, Murcray FJ, Stephen TM, Pine AS, Zander R, Mahieu E, Demoulin P (1998) Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane. J Geophys Res Atmos 103(D21)

    Google Scholar 

  18. Notholt J, Kuang Z, Rinsland CP, Toon GC, Rex M, Jones N, Albrecht T, Deckelmann H, Krieg J, Weinzierl C, Bingemer H, Weller R, Schrems O (2003) Enhanced upper tropical tropospheric COS: impact on the stratospheric aerosol layer. Science 300(5617)

    Google Scholar 

  19. Kasai YJ, Koshiro T, Endo M, Jones NB, Murayama Y (2005) Ground-based measurement of strato-mesospheric CO by a FTIR spectrometer over Poker Flat, Alaska. Adv Space Res 35

    Google Scholar 

  20. Velazco V, Wood S, Sinnhuber M, Kramer I, Jones N, Kasai Y, Notholt J, Warneke T, Blumenstock T, Hase F, Murcray F, Schrems O (2007) Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry. Atmos Chem Phys 7(5)

    Google Scholar 

  21. Borsdorff T, Sussmann R (2009) On seasonality of stratomesospheric CO above midlatitudes: new insight from solar FTIR spectrometry at Zugspitze and Garmisch. Geophys Res Lett 36(21)

    Google Scholar 

  22. Jones NB, Rinsland CP, Liley JB, Rosen J (2001) Correlation of aerosol and carbon monoxide at 45°S: evidence of biomass burning emissions. Geophys Res Lett 28(4)

    Google Scholar 

  23. Yurganov L, Blumenstock T, Grechko E, Hase F, Hyer E, Kasischke E, Koike M, Kondo Y, Kramer I, Leung F-Y, Mahieu E, Mellqvist J, Notholt J, Novelli P, Rinsland C, Scheel H, Schulz A, Strandberg A, Sussman R, Tanimoto H, Velazco V, Zander R, Zhao Y (2004) A quantitative assessment of the 1998 carbon monoxide emission anomaly in the Northern Hemisphere based on total column and surface concentration measurements. J Geophys Res D Atmos 109(15)

    Google Scholar 

  24. Yurganov L, Duchatelet P, Dzhola A, Edwards D, Hase F, Kramer I, Mahieu E, Mellqvist J, Notholt J, Novelli P, Rockmann A, Scheel H, Schneider M, Schulz A, Strandberg A, Sussmann R, Tanimoto H, Velazco V, Drummond J, Gille J (2005) Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space. Atmos Chem Phys 5(2)

    Google Scholar 

  25. Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific Publishing

    Book  Google Scholar 

  26. Khalil MA, Rasmussen RA (1990) The global cycle of carbon monoxide: trends and mass balance. Chemosphere 20(1–2)

    Google Scholar 

  27. Bergamaschi P, Bergamaschi P, Hein R, Heimann M, Crutzen PJ (2000) Inverse modeling of the global CO cycle 1. Inversion of CO mixing ratios. J Geophys Res Atmos 105(D2)

    Google Scholar 

  28. Holloway T, Levy H, Kasibhatla P (2000) Global distribution of carbon monoxide. J Geophys Res Atmos 105(D10)

    Google Scholar 

  29. Krishnamurti TN, Sinha MC, Kanamitsu M, Oosterhof D, Fuelberg H, Chatfield R, Jacob DJ, Logan J (1996) Passive tracer transport relevant to the TRACE A experiment. J Geophys Res Atmos 101(19)

    Google Scholar 

  30. Velazco V, Morino I, Uchino O, Hori A, Kiel M, Bukosa B, Deutscher N, Sakai T, Nagai T, Bagtasa G, Izumi T, Yoshida Y, Griffith D (2017) TCCON Philippines: first measurement results, satellite data and model comparisons in Southeast Asia. Remote Sens 9(12)

    Google Scholar 

  31. Rex M, Wohltmann I, Ridder T, Lehmann R, Rosenlof K, Wennberg P, Weisenstein D, Notholt J, Krüger K, Mohr V, Tegtmeier S (2014) A tropical West Pacific OH minimum and implications for stratospheric composition. Atmos Chem Phys 14(9)

    Google Scholar 

  32. Velazco V (2006) Studies on the transport of CO and related biomass burning emissions using ground-based Fourier transform infrared spectrometry

    Google Scholar 

  33. Pickering KE, Thompson AM, Wang Y, Tao WK, McNamara DP, Kirchhoff VW, Heikes BG, Sachse GW, Bradshaw JD, Gregory GL, Blake DR (1996) Convective transport of biomass burning emissions over Brazil during TRACE A. J Geophys Res Atmos 101(19)

    Google Scholar 

  34. Freitas SR, Longo KM, Silva Dias MA, Silva Dias PL, Chatfield R, Prins E, Artaxo P, Grell GA, Recuero FS (2005) Monitoring the transport of biomass burning emissions in South America. Environ Fluid Mech 5(1–2)

    Google Scholar 

  35. Sussmann R, Buchwitz M (2005) Initial validation of ENVISAT/SCIAMACHY columnar CO by FTIR profile retrievals at the Ground-Truthing Station Zugspitze. Atmos Chem Phys 5(6)

    Google Scholar 

  36. Buchwitz M, De Beek R, Noël S, Burrows JP, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bergamaschi P, Körner S, Heimann M (2006) Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmos Chem Phys 6(9)

    Google Scholar 

  37. Borsdorff T, Tol P, Williams JE, De Laat J, Aan De Brugh J, Nédélec P, Aben I, Landgraf J (2016) Carbon monoxide total columns from SCIAMACHY 2.3 μm atmospheric reflectance measurements: towards a full-mission data product (2003–2012). Atmos Measur Tech 9(1)

    Google Scholar 

  38. Schneising O, Buchwitz M, Reuter M, Bovensmann H, Burrows J, Borsdorff T, Deutscher N, Feist D, Griffith D, Hase F, Hermans C, Iraci L, Kivi R, Landgraf J, Morino I, Notholt J, Petri C, Pollard D, Roche S, Shiomi K, Strong K, Sussmann R, Velazco V, Warneke T, Wunch D (2019) A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmos Measur Tech 12(12)

    Google Scholar 

  39. Steinbrecht W, Kubistin D, Plass-Dülmer C, Davies J, Tarasick DW, Gathen PVD, Deckelmann H, Jepsen N, Kivi R, Lyall N, Palm M, Notholt J, Kois B, Oelsner P, Allaart M, Piters A, Gill M, Van Malderen R, Delcloo AW, Sussmann R, Mahieu E, Servais C, Romanens G, Stübi R, Ancellet G, Godin-Beekmann S, Yamanouchi S, Strong K, Johnson B, Cullis P, Petropavlovskikh I, Hannigan JW, Hernandez JL, Rodriguez AD, Nakano T, Chouza F, Leblanc T, Torres C, Garcia O, Röhling AN, Schneider M, Blumenstock T, Tully M, Paton-Walsh C, Jones N, Querel R, Strahan S, Stauffer RM, Thompson AM, Inness A, Engelen R, Chang KL, Cooper OR (2021) COVID-19 crisis reduces free tropospheric ozone across the Northern Hemisphere. Geophys Res Lett 48(5)

    Google Scholar 

  40. Laughner JL (2021) The 2020 COVID-19 pandemic and atmospheric composition: back to the future. Proc Natl Acad Sci XXX(Xx)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voltaire A. Velazco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Velazco, V.A. (2023). Ground-Based Remote Sensing Measurements of Carbon Monoxide (CO) Using Fourier Transform Infrared (FT-IR) Spectrometry. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_56

Download citation

Publish with us

Policies and ethics

Navigation