SKYNET

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

The sky-radiometer-based observation network called SKYNET is briefly introduced. Two dedicated on-site calibration methods, the improved Langley (IL) and solar disk scan (SDS) methods, enable long-term continuous well-calibrated observation of the optical properties of atmospheric aerosols. The uncertainty in the calibration constant derived using the IL method was estimated to be better than 2.4%. The uncertainty in the solid view angle estimated using the SDS method was improved and found from simulation to be lower than 0.5% under low aerosol conditions. To confirm these estimates, aerosol optical depth (or aerosol optical thickness) comparisons with other independent data generally showed a root-mean-square difference smaller than ~0.02 at a wavelength (λ) ≥500 nm and ~0.03 at shorter wavelengths. The accuracy of the single scattering albedo retrieval was found to be better than ~0.02 for λ ≤500 nm and tended to take a larger value of ~0.05 at 870 nm. Recent progress supporting the ability of SKYNET to enable precise quantitative analysis of light-absorbing aerosols is also presented. Efforts to improve the retrieval methods for aerosols and other components, such as clouds, water vapor, and ozone, are ongoing together with growth of the international SKYNET community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakajima T, Yoon SC, Ramanathan V, Shi GY, Takemura T, Higurashi A, Takamura T, Aoki K, Sohn BJ, Kim SW, Tsuruta H, Sugimoto N, Shimizu A, Tanimoto H, Sawa Y, Lin NH, Lee CT, Goto D, Schutgens N (2007) Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J Geophys Res 112:D24S91. https://doi.org/10.1029/2007JD009009

    Article  Google Scholar 

  2. Ramanathan V, Li F, Ramana MV, Praveen PS, Kim D, Corrigan CE, Nguyen H, Stone EA, Schauer JJ, Carmichael GR, Adhikary B, Yoon SC (2007) Atmospheric brown clouds: hemispherical and regional variations in long range transport, absorption and radiative forcing. J Geophys Res 112:D22S21. https://doi.org/10.1029/2006JD008124

    Article  Google Scholar 

  3. Sherman JP, McComiskey A (2018) Measurement-based climatology of aerosol direct radiative effect, its sensitivities, and uncertainties from a background southeast US site. Atmos Chem Phys 18:4131–4152. https://doi.org/10.5194/acp-18-4131-2018

    Article  Google Scholar 

  4. Nakajima T, Campanelli M, Che H, Estellés V, Irie H, Kim S-W, Kim J, Liu D, Nishizawa T, Pandithurai G, Soni VK, Thana B, Tugjsurn N-U, Aoki K, Go S, Hashimoto M, Higurashi A, Kazadzis S, Khatri P, Kouremeti N, Kudo R, Marenco F, Momoi M, Ningombam SS, Ryder CL, Uchiyama A, Yamazaki A (2020) An overview of and issues with sky radiometer technology and SKYNET. Atmos Meas Tech 13:4195–4218. https://doi.org/10.5194/amt-13-4195-2020

    Article  Google Scholar 

  5. Takamura T, Nakajima T (2004) Overview of SKYNET and its activities. Opt Pura Apl 37:3303–3308

    Google Scholar 

  6. Takamura T, Takenaka H, Cui Y, Nakajima TY, Higurashi A, Fukuda S, Kikuchi N, Nakajima T, Sato I, Pinker RT (2009) Aerosol and cloud validation system based on SKYNET observations: estimation of shortwave radiation budget using ADEOS-II/GLI data. J Remote Sens Jpn 29:40–53

    Google Scholar 

  7. Khatri P, Takamura T, Nakajima T, Estellés V, Irie H, Kuze H, Campanelli M, Sinyuk A, Lee S-M, Sohn BJ, Pandithurai G, Kim S-W, Yoon SC, Martinez-Lozano JA, Hashimoto M, Devara PCS, Manago N (2016) Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET. J Geophys Res Atmos 121:1859–1877. https://doi.org/10.1002/2015JD023976

    Article  Google Scholar 

  8. Irie H, Hoque HMS, Damiani A, Okamoto H, Fatmi AM, Khatri P, Takamura T, Jarupongsakul T (2019) Simultaneous observations by sky radiometer and MAX-DOAS for characterization of biomass burning plumes in central Thailand in January-April 2016. Atmos Meas Tech 12:599–606. https://doi.org/10.5194/amt-12-599-2019

    Article  Google Scholar 

  9. Campanelli M, Nakajima T, Olivieri B (2004) Determination of the solar calibration constant a sun-sky radiometer: proposal of an in situ procedure. Appl Opt 43:651–659

    Article  Google Scholar 

  10. Campanelli M, Estelles V, Tomasi C, Nakajima T, Malvestuto V, Martinez-Lozano JA (2007) Application of the SKYRAD improved Langley plot method for the in situ calibration of CIMEL sun-sky photometers. Appl Opt 46:2688–2702

    Article  Google Scholar 

  11. Campanelli M, Estellés V, Smyth T, Tomasi C, Martinez-Lozano MP, Claxton B, Muller P, Pappalardo G, Pietruczuk A, Shanklin J, Colwell S, Wrench C, Lupi A, Mazzola M, Lanconelli C, Vitale V, Congeduti F, Dionisi D, Cardillo F, Cacciani M, Casasanta G, Nakajima T (2012) Monitoring of Eyjafjallajökull volcanic aerosol by the new European Skynet Radiometers (ESR) network. Atmos Environ 48:33–45. https://doi.org/10.1016/j.atmosenv.2011.09.070

    Article  Google Scholar 

  12. Higurashi A, Nakajima T (2002) Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys Res Lett 29(17):1836. https://doi.org/10.1029/2002GL015357

    Article  Google Scholar 

  13. Kim D-H, Sohn B-J, Nakajima T, Takamura T (2005) Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. J Geophys Res 110:D10S22. https://doi.org/10.1029/2004JD004678

    Article  Google Scholar 

  14. Sohn BJ, Nakajima T, Chun HW, Aoki K (2007) More absorbing dust aerosol inferred from sky radiometer measurements at Anmyeon, Korea. J Meteorol Soc Jpn 85:815–823

    Article  Google Scholar 

  15. Pandithurai G, Takamura T, Yamaguchi J, Miyagi K, Takano T, Ishizaka Y, Dipu S, Shimizu A (2009) Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region. Geophys Res Lett 36:L13805. https://doi.org/10.1029/2009GL038451

    Article  Google Scholar 

  16. Campanelli M, Lupi A, Nakajima T, Malvestuto V, Tomasi C, Estelles V (2010) Columnar content of atmospheric water vapour from ground-based sun/sky radiometer measurements through a new in-situ procedure. J Geophys Res 115:D19304. https://doi.org/10.1029/2009JD013211

    Article  Google Scholar 

  17. Khatri P, Takamura T, Shimizu A, Sugimoto N (2010) Spectral dependency of aerosol light-absorption over the East China Sea region. SOLA 6:1–4

    Article  Google Scholar 

  18. Hoque HMS, Irie H, Damiani A, Momoi M (2020) Primary evaluation of the GCOM-C aerosol products at 380 nm using ground-based sky radiometer observations. Remote Sens 12(16):2661. https://doi.org/10.3390/rs12162661

    Article  Google Scholar 

  19. Kobayashi H, Shiobara M (2015) Development of new shipborne aureolemeter to measure the intensities of direct and scattered solar radiation on rolling and pitching vessel. In: Proceedings of SPIE 9640, Remote Sensing of Clouds and the Atmosphere, 96401A, 1–9. https://doi.org/10.1117/12.2195691

  20. Uchiyama A, Shiobara M, Kobayashi H, Matsunaga T, Yamazaki A, Inei K, Kawai K, Watanabe Y (2019) Nocturnal aerosol optical depth measurements with modified sky radiometer POM-02 using the moon as a light source. Atmos Meas Tech 12:6465–6488. https://doi.org/10.5194/amt-12-6465-2019

    Article  Google Scholar 

  21. Nakajima T, Tonna G, Rao R, Kaufman Y, Holben B (1996) Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl Opt 35:2672–2686

    Article  Google Scholar 

  22. Uchiyama A, Matsunaga T, Yamazaki A (2018) The instrument constant of sky radiometer (POM-02) – Part 2: Solid view angle. Atmos Meas Tech 11:5389–5402. https://doi.org/10.5194/amt-11-5389-2018

    Article  Google Scholar 

  23. Manago N, Khatri P, Irie H, Takamura T, Kuze H (2016) On the method of solid view angle calibration for SKYNET skyradiometers. In: 4th International SKYNET workshop, Rome, Italy, 2–4 March

    Google Scholar 

  24. Nakajima T, Tanaka M, Hayasaka T, Miyake Y, Nakanishi Y, Sasamoto K (1986) Airborne measurements of the optical stratification of aerosols in turbid atmospheres. Appl Opt 25:4374–4381

    Article  Google Scholar 

  25. Boi P, Tonna G, Dalu G, Nakajima T, Olivieri B, Pompei A, Campanelli M, Rao R (1999) Calibration and data elaboration procedure for sky irradiance measurements. Appl Opt 38:896–907. https://doi.org/10.1364/AO.38.000896

    Article  Google Scholar 

  26. Mok J, Krotkov N, Torres O, Jethva H, Li Z, Kim J, Koo J-H, Go S, Irie H, Labow G, Eck T, Holben B, Herman J, Loughman R, Spinei E, Lee SS, Khatri P, Campanelli M (2018) Comparisons of spectral aerosol absorption in Seoul, South Korea. Atmos Meas Tech 11:2295–2311. https://www.atmos-meas-tech.net/11/2295/2018/

    Article  Google Scholar 

  27. Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Geophys Res 59:590–608

    Google Scholar 

  28. Krotkov NA, Bhartia PK, Herman JR, Slusser JR, Labow G, Scott GR, Janson GT, Eck TF, Holben BN (2005a) Aerosol ultraviolet absorption experiment (2002 to 2004), part 1: ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers. Opt Eng 44:041004. https://doi.org/10.1117/1.1886818

    Article  Google Scholar 

  29. Krotkov NA, Bhartia PK, Herman JR, Slusser JR, Scott GR, Labow G, Vasilkov AP, Eck TF, Dubovik O, Holben BN (2005b) Aerosol ultraviolet absorption experiment (2002 to 2004), part 2: absorption optical thickness, refractive index, and single scattering albedo. Opt Eng 44:041005. https://doi.org/10.1117/1.1886819

    Article  Google Scholar 

  30. Herman J, Cede A, Spinei E, Mount G, Tzortziou M, Abuhassan N (2009) NO2 column amounts from groundbased Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: intercomparisons and application to OMI validation. J Geophys Res 114:D13307. https://doi.org/10.1029/2009JD011848

    Article  Google Scholar 

  31. Crawford JH, Ahn J-Y, Al-Saadi J, Chang L, Emmons LK, Kim J, Lee G, Park J-H, Park R-J, Woo JH, Song C-K, Hong J-H, Hong Y-D, Lefer BL, Lee M, Lee T, Kim S, Min K-E, Yum SS, Shin HJ, Kim Y-W, Choi J-S, Park J-S, Szykman JJ, Long RW, Jordan CE, Simpson JJ, Fried A, Dibb JE, Cho SY, Kim YP (2021) The Korea–United States Air Quality (KORUS-AQ) field study. Elementa: Sci Anthropocene 9(1). https://doi.org/10.1525/elementa.2020.00163

  32. Che H, Shi G, Uchiyama A, Yamazaki A, Chen H, Goloub P, Zhang X (2008) Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Bei**g, China. Atmos Chem Phys 8:3199–3214. https://doi.org/10.5194/acp-8-3199-2008

    Article  Google Scholar 

  33. Jethva H, Torres O (2019) A comparative evaluation of Aura-OMI and SKYNET near-UV single-scattering albedo products. Atmos Meas Tech 12:6489–6503. https://doi.org/10.5194/amt-12-6489-2019

    Article  Google Scholar 

  34. Khatri P, Iwabuchi H, Hayasaka T, Irie H, Takamura T, Yamazaki A, Damiani A, Letu H, Kai Q (2019) Retrieval of cloud properties from spectral zenith radiances observed by sky radiometers. Atmos Meas Tech 12:6037–6047. https://doi.org/10.5194/amt-12-6037-2019

    Article  Google Scholar 

  35. Momoi M, Kudo R, Aoki K, Mori T, Miura K, Okamoto H, Irie H, Shoji Y, Uchiyama A, Ijima O, Takano M, Nakajima T (2020) Development of on-site self-calibration and retrieval methods for sky-radiometer observations of precipitable water vapor. Atmos Meas Tech 13:2635–2658. https://doi.org/10.5194/amt-13-2635-2020

    Article  Google Scholar 

  36. Kudo R, Diémoz H, Estellés V, Campanelli M, Momoi M, Marenco F, Ryder CL, Ijima O, Uchiyama A, Nakashima K, Yamazaki A, Nagasawa R, Ohkawara N, Ishida H (2021) Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals. Atmos Meas Tech 14:3395–3426. https://doi.org/10.5194/amt-14-3395-2021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Irie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Irie, H., Nakajima, T. (2023). SKYNET. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_52

Download citation

Publish with us

Policies and ethics

Navigation