Construction of Well-Defined Discrete Metallacycles and Their Biological Applications

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 1277 Accesses

Abstract

Through the facile and efficient coordination-driven self-assembly, a series of well-defined discrete metallacycles with diverse structures and well-tuned functional groups have been successfully constructed. The existence of the biological active metal complexes that serve as the key components endows the resultant metallacycles wide biological applications such as anticancer, DNA binding, bioimaging, drug delivery, photodynamic therapy, etc. In this chapter, classified by the varied metallic building blocks such as Pd, Pt, Ru, Rh, Ir, etc. in the resultant metallacycles, an overview of their biological applications is provided. In each section, the emphasis focuses on the design strategy of building blocks and the biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacharya PK (2005) Metal ions in biochemistry. Alpha Science International, Harrow

    Google Scholar 

  2. Kraatz HB, Metzler-Nolte N (2006) Concepts and models in bioinorganic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  3. Jaouen G (2006) Bioorganometallics: biomolecules, labeling, medicine. Wiley, Weinheim

    Google Scholar 

  4. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385

    CAS  PubMed  Google Scholar 

  5. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573

    CAS  PubMed  Google Scholar 

  6. Chakrabarty R, Mukherjee PS, Stang PJ (2011) Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem Rev 111:6810

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang HB (2019) Metallomacrocycles: from structures to applications. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  8. Northrop BH, Yang HB, Stang PJ (2008) Coordination-driven self-assembly of functionalized supramolecular metallacycles. Chem Commun 45:5896

    Google Scholar 

  9. Cook TR, Vajpayee V, Lee MH, Stang PJ, Chi K-W (2013) Biomedical and biochemical applications of self-assembled metallacycles and metallacages. Acc Chem Res 46:2464

    CAS  PubMed  Google Scholar 

  10. Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P (2016) New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 310:41

    CAS  Google Scholar 

  11. Cook TR, Stang PJ (2015) Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem Rev 115:7001

    CAS  PubMed  Google Scholar 

  12. Fujita M, Yazaki J, Ogura K (1990) Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4′-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J Am Chem Soc 112:5645

    CAS  Google Scholar 

  13. Stang PJ, Cao DH (1994) Transition metal based cationic molecular boxes. Self-assembly of macrocyclic platinum(II) and palladium(II) tetranuclear complexes. J Am Chem Soc 116:4981

    CAS  Google Scholar 

  14. Kieltyka R, Englebienne P, Fakhoury J, Autexier C, Moitessier N, Sleiman HF (2008) A platinum supramolecular square as an effective G-quadruplex binder and telomerase inhibitor. J Am Chem Soc 130:10040

    CAS  PubMed  Google Scholar 

  15. Mishra A, Ravikumar S, Hong SH, Kim H, Vajpayee V, Lee H, Ahn B, Wang M, Stang PJ, Chi K-W (2011) DNA binding and unwinding by self-assembled supramolecular heterobimetallacycles. Organometallics 30:6343

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grishagin IV, Pollock JB, Kushal S, Cook TR, Stang PJ, Olenyuk BZ (2014) In vivo anticancer activity of rhomboidal Pt(II) metallacycles. Proc Natl Acad Sci U S A 111:18448

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang M, Li S, Yan X, Zhou Z, Saha ML, Wang Y-C, Stang PJ (2016) Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging. Proc Natl Acad Sci U S A 113:11100

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu G, Zhang M, Saha ML, Mao Z, Chen J, Yao Y, Zhou Z, Liu Y, Gao C, Huang F, Chen X, Stang PJ (2017) Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J Am Chem Soc 139:15940

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Datta S, Misra SK, Saha ML, Lahiri N, Louie J, Pan D, Stang PJ (2018) Orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Proc Natl Acad Sci U S A 115:8087

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Z, Liu J, Rees TW, Wang H, Li X, Chao H, Stang PJ (2018) Heterometallic Ru–Pt metallacycle for two-photon photodynamic therapy. Proc Natl Acad Sci U S A 115:5664

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou J, Zhang Y, Yu G, Crawley MR, Fulong CRP, Friedman AE, Sengupta S, Sun J, Li Q, Huang F, Cook TR (2018) Highly emissive self-assembled BODIPY-platinum supramolecular triangles. J Am Chem Soc 140:7730

    CAS  PubMed  Google Scholar 

  22. Yue Z, Wang H, Li Y, Qin Y, Xu L, Bowers DJ, Gangoda M, Li X, Yang H-B, Zheng Y-R (2018) Coordination-driven self-assembly of a Pt(IV) prodrug-conjugated supramolecular hexagon. Chem Commun 54:731

    CAS  Google Scholar 

  23. Bhowmick S, Jana A, Singh K, Gupta P, Gangrade A, Mandal BB, Das N (2018) Coordination-driven self-assembly of ionic irregular hexagonal metallamacrocycles via an organometallic clip and their cytotoxicity potency. Inorg Chem 57:3615

    CAS  PubMed  Google Scholar 

  24. Singh K, Gangrade A, Bhowmick S, Jana A, Mandal BB, Das N (2018) Self-assembly of a [1 + 1] ionic hexagonal macrocycle and its antiproliferative activity. Front Chem 6:87

    PubMed  PubMed Central  Google Scholar 

  25. Gupta G, Das A, Park KC, Tron A, Kim H, Mun J, Mandal N, Chi K-W, Lee CY (2017) Self-assembled novel BODIPY-based palladium supramolecules and their cellular localization. Inorg Chem 56:4615

    Google Scholar 

  26. Kenny RG, Marmion CJ (2019) Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? Chem Rev 119:1058

    CAS  PubMed  Google Scholar 

  27. Levina A, Mitra A, Lay PA (2009) Recent developments in ruthenium anticancer drugs. Metallomics 1:458

    CAS  PubMed  Google Scholar 

  28. Dale LD, Tocher JH, Dyson TM, Edwards DI, Tocher DA (1992) Studies on DNA damage and induction of SOS repair by novel multifunctional bioreducible compounds. II. A metronidazole adduct of a ruthenium-arene compound. Anticancer Drug Des 7:3

    CAS  PubMed  Google Scholar 

  29. Mattsson J, Govindaswamy P, Renfrew AK, Dyson PJ, Stepnicka P, Suss-Fink G, Therrien B (2009) Synthesis, molecular structure, and anticancer activity of cationic arene ruthenium metallarectangles. Organometallics 28:4350

    CAS  Google Scholar 

  30. Linares F, Galindo MA, Galli S, Romero MA, Navarro JAR, Barea E (2009) Tetranuclear coordination assemblies based on half-sandwich ruthenium(II) complexes: noncovalent binding to DNA and cytotoxicity. Inorg Chem 48:7413

    CAS  PubMed  Google Scholar 

  31. Vajpayee V, Song YH, Yang YJ, Kang SC, Cook TR, Kim DW, Lah MS, Kim IS, Wang M, Stang PJ, Chi K-W (2011) Self-assembly of cationic, hetero- or homonuclear ruthenium(II) macrocyclic rectangles and their photophysical, electrochemical, and biological studies. Organometallics 30:6482

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vajpayee V, Lee S, Kim S-H, Kang SC, Cook TR, Kim H, Kim DW, Verma S, Lah MS, Kim IS, Wang M, Stang PJ, Chi K-W (2013) Self-assembled metalla-rectangles bearing azodipyridyl ligands: synthesis, characterization and antitumor activity. Dalton Trans 42:466

    CAS  PubMed  Google Scholar 

  33. Vajpayee V, Song YH, Jung YJ, Kang SC, Kim H, Kim IS, Wang M, Cook TR, Stang PJ, Chi K-W (2012) Coordination-driven self-assembly of ruthenium-based molecular rectangles: synthesis, characterization, photo-physical and anticancer potency studies. Dalton Trans 41:3046

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vajpayee V, Song YH, Yang YJ, Kang SC, Kim H, Kim IS, Wang M, Stang PJ, Chi K-W (2011) Coordination-driven self-assembly and anticancer activity of molecular rectangles containing octahedral ruthenium metal centers. Organometallics 30:3242

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mishra A, Jeong YJ, Jo J-H, Kang SC, Kim H, Chi K-W (2014) Coordination-driven self-assembly and anticancer potency studies of arene−ruthenium-based molecular metalla-rectangles. Organometallics 33:1144

    CAS  Google Scholar 

  36. Dubey A, Jeong YJ, Jo JH, Woo S, Kim DH, Kim H, Kang SC, Stang PJ, Chi K-W (2015) Anticancer activity and autophagy involvement of self-assembled arene−ruthenium metallacycles. Organometallics 34:4507

    CAS  Google Scholar 

  37. Singh N, Jang S, Jo J-H, Kim DH, Park DW, Kim I, Kim H, Kang SC, Chi K-W (2016) Coordination-driven self-assembly and anticancer potency studies of ruthenium–cobalt-based heterometallic rectangles. Chem Eur J 22:16157

    CAS  PubMed  Google Scholar 

  38. Kim T, Song HS, Singh J, Kim D, Kim H, Kang SC, Chi K-W (2018) Coordination-driven self-assembly and anticancer studies of thiophene-derived donor and arene ruthenium acceptors. Inorg Chim Acta 482:179

    CAS  Google Scholar 

  39. Ahmad H, Ghosh D, Thomas JA (2014) Using ancillary ligands to tune the DNA binding properties of self-assembled luminescent metallomacrocycles. Chem Commun 50:3859

    CAS  Google Scholar 

  40. Walker MG, Jarman PJ, Gill MR, Tian X, Ahmad H, Reddy PAN, McKenzie L, Weinstein JA, Meijer AJHM, Battaglia G, Smythe CGW, Thomas JA (2016) A self-assembled metallomacrocycle singlet oxygen sensitizer for photodynamic therapy. Chem Eur J 22:5996

    CAS  PubMed  Google Scholar 

  41. Gupta G, Nowak-Sliwinska P, Herrero N, Dyson PJ, Therrien B (2015) Increasing the selectivity of biologically active tetranuclear arene ruthenium assemblies. J Organomet Chem 796:59

    CAS  Google Scholar 

  42. Gupta G, Das A, Ghate NB, Kim T, Ryu JY, Lee J, Mandal N, Lee CY (2016) Novel BODIPY-based Ru(II) and Ir(III) metallarectangles: cellular localization of compounds and their antiproliferative activities. Chem Commun 52:4274

    CAS  Google Scholar 

  43. Gupta G, Das A, Panja S, Ryu JY, Lee J, Mandal N, Lee CY (2017) Self-assembly of novel thiophene-based BODIPY RuII rectangles: potential antiproliferative agents selective against cancer cells. Chem Eur J 23:17199

    CAS  PubMed  Google Scholar 

  44. Liu Z, Sadler PJ (2014) Organoiridium complexes: anticancer agents and catalysts. Acc Chem Res 47:1174

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang C, Liu J, Tian Z, Tian M, Tian L, Zhao W, Liu Z (2017) Half-sandwich iridium N-heterocyclic carbene anticancer complexes. Dalton Trans 46:6870

    CAS  PubMed  Google Scholar 

  46. Gupta G, Murray BS, Dyson PJ, Therrien B (2013) Synthesis, molecular structure and cytotoxicity of molecular materials based on water soluble half-sandwich Rh(III) and Ir(III) tetranuclear metalla-cycles. Materials 6:5352

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta G, Kumar JM, Garci A, Nagesh N, Therrien B (2014) Exploiting natural products to build metalla-assemblies: the anticancer activity of embelin-derived Rh(III) and Ir(III) metalla-rectangles. Molecules 19:6031

    PubMed  PubMed Central  Google Scholar 

  48. Gupta G, Das A, Lee J, Mandal N, Lee CY (2018) Self-assembled BODIPY-based iridium metallarectangles: cytotoxicity and propensity to bind biomolecules. ChemPlusChem 83:339

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, XQ., Liu, X., Wang, W., Yang, HB. (2020). Construction of Well-Defined Discrete Metallacycles and Their Biological Applications. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_43

Download citation

Publish with us

Policies and ethics

Navigation