Radiative Forcing and Global Warming

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change
  • 45 Accesses

Abstract

Fundamental to understanding climate change is understanding the energy budget between solar and infrared radiation. Radiative forcing represents the energy imbalance. Current climate change is caused by an imbalance of about 1% of the global average energy budget. Each greenhouse gas causes an energy imbalance by absorbing infrared radiation at certain wavelengths. Suspended particulate matters, “aerosols,” affect the energy budget primarily by scattering or absorbing solar radiation in the broad wavelength range, and through their role as cloud nuclei, they also alter the scattering and absorption properties of solar and infrared radiation in clouds. There are a few definitions of radiative forcing, and it is important to understand which definition is being used. In the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC), the definition of radiative forcing primarily used has changed as our understanding of climate change has evolved. Climate sensitivity is defined as the change in surface air temperature for a doubling of carbon dioxide (CO2) concentration, but the temperature change per radiative forcing is different for each composition and is indexed by its relative ratio, efficiency, to the CO2 case. Time integral of radiative forcing for an instantaneous 1 kg emission of the composition of interest relative to CO2 is the global warming potential (GWP), which is commonly used to calculate CO2 equivalent emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, König-Langlo G (2014) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44:3393–3429. https://doi.org/10.1007/s00382-014-2430-z

    Article  Google Scholar 

  2. Goody RM, Yung YL (1989) Atmospheric radiation. Oxford University Press, New York

    Book  Google Scholar 

  3. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York. https://doi.org/10.1017/CBO9781107415324.016

    Chapter  Google Scholar 

  4. WCP-55 (1983) In: Deepak A, Gerber HE (eds) Report of the experts meeting on aerosols and their climatic effects. World Meteorological Organization, Williamsburg

    Google Scholar 

  5. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152. https://doi.org/10.1175/1520-0469(1977)034<1149:Tiopot>2.0.Co;2

    Article  Google Scholar 

  6. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York. https://doi.org/10.1017/CBO9781107415324.018

    Chapter  Google Scholar 

  7. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res Atmos 110:D18104. https://doi.org/10.1029/2005JD005776

    Article  Google Scholar 

  8. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2003) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. https://doi.org/10.1029/2003GL018747

    Article  Google Scholar 

  9. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230. https://doi.org/10.1126/science.245.4923.1227

    Article  Google Scholar 

  10. Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 4:294–300. https://doi.org/10.1038/ngeo473

    Article  Google Scholar 

  11. Forster P, Storelvmo T, Armour K, Collins W, Dufresne J-L, Frame D, Lunt DJ, Mauritsen T, Palmer MD, Watanabe M, Wild M, Zhang H (2021) The Earth’s energy budget, climate feedbacks, and climate sensitivity. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, pp 923–1054. https://doi.org/10.1017/9781009157896.009

    Chapter  Google Scholar 

  12. Szopa S, Naik V, Adhikary B, Artaxo P, Berntsen T, Collins WD, Fuzzi S, Gallardo L, Kiendler-Scharr A, Klimont Z, Liao H, Unger N, Zanis P (2021) Short-lived climate forcers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, pp 817–922. https://doi.org/10.1017/9781009157896.008

    Chapter  Google Scholar 

  13. Schimel D, Alves D, Enting I, Heimann M, Joos F, Raynaud D, Wigley T, Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E, Zhou X, Jonas P, Charlson R, Rodhe H, Sadasivan S, Shine KP, Fouquart Y, Ramaswamy V, Solomon S, Srinivasan J, Albritton D, Isaksen I, Lal M, Wuebbles D (1996) Radiative forcing of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Haiirs N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  14. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302. https://doi.org/10.1007/s10584-005-1146-9

    Article  Google Scholar 

  15. Shine KP, Derwent RG, Wuebbles DJ, Morcrette J-J (1990) Radiative forcing of climate. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the IPCC scientific assessment. Contribution of working group I to the first assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  17. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Griibler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  18. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JF, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1007/10.1038/nature08823

    Article  Google Scholar 

  19. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. https://doi.org/10.1007/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  20. O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijven BJ, van Vuuren DP, Birkmann J, Kok K, Levy M, Solecki W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Change 42:169–180. https://doi.org/10.1007/10.1016/j.gloenvcha.2015.01.004

    Article  Google Scholar 

Download references

Acknowledgments

The writing of this chapter was supported by the Environment Research and Technology Development Fund (grant no. JPMEERF21S12010) of the Environmental Restoration and Conservation Agency provided by the Ministry of Environment of Japan, and the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant no. JP19H05669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Takemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Takemura, T. (2022). Radiative Forcing and Global Warming. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Navigation