Effects of Ozone on Agricultural Crops

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

Surface ozone is increasing in Asia and has become a major environmental stressor to the agricultural crop productions therein. This chapter summarizes the mechanisms of the ozone impacts on agricultural crops, and introduces the methodology for quantifying the crop yield losses using the results of ozone exposure experiments. Descriptions are given on differences and similarities between the ozone dose metrics: AOT40, M7/ M12, W126, and flux-based ozone dose metric PODy. Widely used dose-response relationships are also presented and compared with each other. Other approaches to the quantification of ozone impacts on crops are also reviewed briefly, and their advantages and drawbacks are discussed. Finally, this chapter introduces possible measures to protect agricultural crops from the impacts of increasing ozone concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Feng Z, Agathokleous E, Yue X, Oksanen E, Paoletti E, Sase H, Gandin A, Koike T, Calatayud V, Yuan X, Liu X, De Marco A, Jolivet Y, Kontunen-Soppela S, Hoshika Y, Saji H, Li P, Li Z, Watanabe M, Kobayashi K (2021) Emerging challenges of ozone impacts on Asian plants: actions are needed to protect ecosystem health. Ecosyst Health Sustain 7(1):1911602. https://doi.org/10.1080/20964129.2021.1911602

    Article  Google Scholar 

  2. Mills G, Sharps K, Simpson D, Pleijel H, Frei M, Burkey K, Emberson L, Uddling J, Broberg M, Feng Z, Kobayashi K, Agrawal M (2018) Closing the global ozone yield gap: quantification and co-benefits for multi-stress tolerance. Glob Chang Biol 24:4869–4893. https://doi.org/10.1111/gcb.14381

    Article  Google Scholar 

  3. Feng Z, Xu Y, Kobayashi K, Dai L, Zhang T, Agathokleous E, Calatayud V, Paoletti E, Mukherjee A, Agrawal M, Park RJ, Oak YJ, Yue X (2022) Ozone pollution threatens the production of major staple crops in East Asia. Nature Food 3:47–56. https://doi.org/10.1038/s43016-021-00422-6

    Article  Google Scholar 

  4. Emberson LD, Büker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K, Oanh NTK, Quadir QF, Wahid A (2009) A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmos Environ 43:1945–1953. https://doi.org/10.1016/j.atmosenv.2009.01.005

    Article  Google Scholar 

  5. Pleijel H, Broberg MC, Uddling J, Kobayashi K (2021) Letter to the editor regarding Pleijel et al. 2019: Ozone sensitivity of wheat in different continents – an addendum. Sci Total Environ 773:146335. https://doi.org/10.1016/j.scitotenv.2021.146335

    Article  Google Scholar 

  6. Heggestad HE, Middleton JT (1959) Ozone in high concentrations as cause of tobacco leaf injury. Science 129(3343):208–210

    Article  Google Scholar 

  7. Heggestad HE (1991) Origin of Bel-W3, Bel-C and Bel-B tobacco varieties and their use as indicators of ozone. Environ Pollut 74:264–291

    Article  Google Scholar 

  8. Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447

    Article  Google Scholar 

  9. Massman WJ (2004) Toward an ozone standard to protect vegetation based on effective dose: a review of deposition resistances and a possible metric. Atmos Environ 38:2323–2337. https://doi.org/10.1016/j.atmosenv.2003.09.079

    Article  Google Scholar 

  10. CLRTAP (2017) Manual on methodologies and criteria for modelling and map** critical loads and levels and air pollution effects, risks and trends. Chapter 3: map** critical levels for vegetation. https://icpvegetation.ceh.ac.uk/. Last accessed on 9 Feb 2022

  11. Dai L, Kobayashi K, Nouchi I, Masutomi Y, Feng Z (2020) Quantifying determinants of ozone detoxification by apoplastic ascorbate in peach (Prunus persica) leaves using a model of ozone transport and reaction. Glob Chang Biol 26:3147–3162. https://doi.org/10.1111/gcb.15049

    Article  Google Scholar 

  12. Vainonen JP, Kangasjärvi J (2016) Plant signalling in acute ozone exposure. Plant Cell Environ 38:240–252. https://doi.org/10.1111/pce.12273

    Article  Google Scholar 

  13. Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897. https://doi.org/10.1111/tpj.13298

    Article  Google Scholar 

  14. Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:1–13. https://doi.org/10.1111/j.1365-2486.2008.01673.x

    Article  Google Scholar 

  15. Choquette NE, Ainsworth EA, Bezodis W, Cavanagh AP (2020) Ozone tolerant maize hybrids maintain Rubisco content and activity during long-term exposure in the field. Plant Cell Environ 43:3033–3047. https://doi.org/10.1111/pce.13876

    Article  Google Scholar 

  16. Morgan PB, Ainsworth EA, Long SP (2003) Elevated O3 impact on soybeans, a meta-analysis of photosynthetic, biomass, and yield responses. Plant Cell Environ 26:1317–1328

    Article  Google Scholar 

  17. Feng Z, Pang J, Kobayashi K, Zhu J, Ort DR (2011) Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Glob Chang Biol 17:580–591. https://doi.org/10.1111/j.1365-2486.2010.02184.x

    Article  Google Scholar 

  18. Kobayashi K, Okada M (1995) Effects of ozone on the light use of rice (Oryza sativa L.) plants. Agric Ecosyst Environ 53:1–12

    Article  Google Scholar 

  19. Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Randall L, Nelson RL, Ort DR, Ainsworth EA (2012) Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol 160:1827–1839. https://doi.org/10.1104/pp.112.205591

    Article  Google Scholar 

  20. Emberson LD, Pleijel H, Ainsworth EA, van den Berg M, Ren W, Osborne S, Mills G, Pandey D, Dentener F, Büker P, Ewert F, Koeble R, Van Dingenen R (2018) Ozone effects on crops and consideration in crop models. Eur J Agron 100:19–34. https://doi.org/10.1016/j.eja.2018.06.002

    Article  Google Scholar 

  21. Pang J, Kobayashi K, Zhu J (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ 132:203–211

    Article  Google Scholar 

  22. Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650. https://doi.org/10.1111/j.1365-2486.2008.01594.x

    Article  Google Scholar 

  23. Wang Y, Yang L, Kobayashi K, Zhu J, Chen CP, Yang K, Tang H, Wang Y (2012) Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China. Agric Ecosyst Environ 150:63–67

    Article  Google Scholar 

  24. Tsukahara K, Sawada H, Kohno Y, Matsuura T, Mori IC, Terao T, Ioki M, Tamaoki M (2015) Ozone-induced rice grain yield loss is triggered via a change in panicle morphology that is controlled by aberrant panicle organization 1 gene. PLoS One 10:e0123308. https://doi.org/10.1371/journal.pone.0123308

    Article  Google Scholar 

  25. Zhang G, Kobayashi K, Wu H, Shang B, Wu R, Zhang Z, Feng Z (2021) Ethylenediurea (EDU) protects inbred but not hybrid cultivars of rice from yield losses due to surface ozone. Environ Sci Pollut Res 28:68946–68956. https://doi.org/10.1007/s11356-021-15032-9

    Article  Google Scholar 

  26. Zhu X, Feng Z, Sun T, Liu X, Tang H, Zhu J, Guo W, Kobayashi K (2011) Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Glob Chang Biol 17:2697–2706. https://doi.org/10.1111/j.1365-2486.2011.02400.x

    Article  Google Scholar 

  27. Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519. https://doi.org/10.1016/j.atmosenv.2008.11.033

    Article  Google Scholar 

  28. **g L, Dombinov V, Shen S, Wu Y, Yang L, Wang Y, Frei M (2016) Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone. Environ Pollut 210:397–408. https://doi.org/10.1016/j.envpol.2016.01.023

    Article  Google Scholar 

  29. Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T (2016) Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Glob Chang Biol 22:1256–1270. https://doi.org/10.1111/gcb.13128

    Article  Google Scholar 

  30. Heagle AS, Kress LW, Temple PJ, Kohut RJ, Miller JE, Heggestad HE (1988) Factors influencing ozone dose-yield response relationships in open-top field chamber studies. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier Science Publishers Ltd., London, pp 141–179

    Chapter  Google Scholar 

  31. Feng Z, Uddling J, Tang H, Zhu J, Kobayashi K (2018) Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Glob Chang Biol 24:2231–2238. https://doi.org/10.1111/gcb.14077

    Article  Google Scholar 

  32. Montes CM, Demler HJ, Li S, Martin DG, Ainsworth EA (2021) Approaches to investigate crop responses to ozone pollution: from O3-FACE to satellite-enabled modeling. Plant J 109(1). https://doi.org/10.1111/tpj.15501

  33. Ainsworth EA, Rogers A, Leakey ADB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19. www.plantphysiol.org/cgi/doi/10.1104/pp.108.117101

    Article  Google Scholar 

  34. Ainsworth EA, Long SP (2021) 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob Chang Biol 27:27–49. https://doi.org/10.1111/gcb.15375

    Article  Google Scholar 

  35. Osborne SA, Mills G, Hayes F, Ainsworth EA, Büker P, Emberson L (2016) Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose–response data. Glob Chang Biol 22:3097–3111. https://doi.org/10.1111/gcb.13318

    Article  Google Scholar 

  36. Pleijel H, Danielsson H, Emberson L, Ashmore MR, Mills G (2007) Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux–response relationships for European wheat and potato. Atmos Environ 41:3022–3040. https://doi.org/10.1016/j.atmosenv.2006.12.002

    Article  Google Scholar 

  37. Rawlings JO, Lesser VM, Heagle AS, Heck WW (1988) Alternative ozone dose metrics to characterize ozone impact on crop yield loss. J Environ Qual 17:285–291

    Article  Google Scholar 

  38. Tang H, Takigawa M, Liu G, Zhu J, Kobayashi K (2013) A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob Chang Biol 19:2739–2752. https://doi.org/10.1111/gcb.12252

    Article  Google Scholar 

  39. Pleijel H, Danielsson H, Broberg MC (2022) Benefits of the Phytotoxic Ozone Dose (POD) index in dose-response functions for wheat yield loss. Atmos Environ 268:118797. https://doi.org/10.1016/j.atmosenv.2021.118797

    Article  Google Scholar 

  40. Heck WW, Taylor OC, Tingey DT (1988) Assessment of crop loss from air pollutants. Elsevier Science Publishers Ltd., London, p 552

    Book  Google Scholar 

  41. Heck WW, Adams RM, Cure WW, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Rawlings JO, Taylor OC (1983) A reassessment of crop loss from ozone. Environ Sci Technol 17:573A–581A

    Article  Google Scholar 

  42. Rawlings JO, Lesser VM, Dassel KA (1988) Statistical approaches to assessing crop losses. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier Science Publishers Ltd., London, pp 389–416

    Chapter  Google Scholar 

  43. Lesser VM, Rawlings JO, Spruill SE, Somerville MC (1990) Ozone effects on agricultural crops: statistical methodologies and estimated dose-response relationships. Crop Sci 30:148–155

    Article  Google Scholar 

  44. Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309. https://doi.org/10.1016/j.atmosenv.2011.01.002

    Article  Google Scholar 

  45. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  Google Scholar 

  46. Manning WJ, Paoletti E, Sandermann H, Ernst D (2011) Ethylenediurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ Pollut 159:3283–3293. https://doi.org/10.1016/j.envpol.2011.07.005

    Article  Google Scholar 

  47. Agathokleous E, Koike T, Watanabe M, Hoshika Y, Saitanis CJ (2015) Ethylene-di-urea (EDU) an effective phytoprotectant against O3 deleterious effects and a valuable research tool. J Agric Meteorol 71:185–195. https://doi.org/10.2480/agrmet.d-14-00017

    Article  Google Scholar 

  48. McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu XG, Long SP, Ainsworth EA (2015) An analysis of ozone damage to historical maize and soybean yields in the United States. Proc Natl Acad Sci 112:14390–14395. www.pnas.org/cgi/doi/10.1073/pnas.1509777112

    Article  Google Scholar 

  49. Hong C, Mueller ND, Burney JA, Zhang Y, AghaKouchak A, Moore FC, Qin Y, Tong D, Davis SJ (2020) Impacts of ozone and climate change on yields of perennial crops in California. Nature Food 1:166–172. https://www.nature.com/articles/s43016-020-0043-8

    Article  Google Scholar 

  50. Ainsworth EA, Lemonnier P, Wedow JM (2020) The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biol 22:5–11. https://doi.org/10.1111/plb.12973

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kobayashi, K. (2022). Effects of Ozone on Agricultural Crops. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Navigation