Machine Tool Calibration

  • Living reference work entry
  • First Online:
Metrology

Part of the book series: Precision Manufacturing ((PRECISION))

  • 235 Accesses

Abstract

Machine tools produce parts by moving a tool relative to a workpiece. Any deviation from the command path may result in errors on the part thus degrading its quality. Machine tool calibration aims to quantify and compensate the machine errors in order to make better parts. This chapter reviews the definitions, nomenclature, and some principles associated with machine tool geometric errors. Forward mathematical models are also presented that calculates the volumetric errors at the tool tip as functions of the causal interaxis and intraaxis errors of the machine with examples covering three- and five-axis machines. Finally, measurement approaches and compensation schemes are briefly covered

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaszadeh-Mir Y et al (2002) Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telesco** magnetic ball-bar. Int J Prod Res 40(18):4781–4797

    Article  Google Scholar 

  • Bitar-Nehme E, Mayer JRR (2016) Thermal volumetric effects under axes cycling using an invar R-test device and reference length. Int J Mach Tools Manuf 105(Suppl C):14–22

    Article  Google Scholar 

  • Bringmann B, Knapp W (2006) Model-based ‘Chase-the-Ball’ calibration of a 5-axes machining center. CIRP Ann Manuf Technol 55(1):531–534

    Article  Google Scholar 

  • Bringmann B, Knapp W (2009) Machine tool calibration: geometric test uncertainty depends on machine tool performance. Precis Eng 33(4):524–529

    Article  Google Scholar 

  • Bryan JB (1979) The Abbé principle revisited: an updated interpretation. Precis Eng 1(3):129–132

    Article  Google Scholar 

  • Bryan JB (1982a) Simple method for testing measuring machine and machine tools Part 1: principles and applications. Precis Eng 4(3):61–69

    Article  Google Scholar 

  • Bryan JB (1982b) Simple method for testing measuring machines and machine tools Part 2: construction details. Precis Eng 4(3):125–138

    Article  Google Scholar 

  • Ekinci TO, Mayer JRR (2007) Relationships between straightness and angular kinematic errors in machines. Int J Mach Tools Manuf 47(12):1997–2004

    Article  Google Scholar 

  • Everett LJ, Hsu T-W (1988) Theory of kinematic parameter identification for industrial robots. J Dyn Syst Meas Control Trans ASME 110(1):96–100

    Article  Google Scholar 

  • Everett LJ, Suryohadiprojo AH (1988) A study of kinematic models for forward calibration of manipulators. In: Robotics and automation, 1988. Proceedings of the 1988 IEEE international conference on

    Google Scholar 

  • Fan KC, Chen MJ, Huang WM (1998) A six-degree-of-freedom measurement system for the motion accuracy of linear stages. Int J Mach Tools Manuf 38(3):155–164

    Article  Google Scholar 

  • Ferreira PM, Liu CR (1986) Contribution to the analysis and compensation of the geometric error of a machining center. In: CIRP annals 1986: manufacturing technology, Annals of the International Institution for Production Engineering Research. Verlag Technische Rundschau, Jerusalem

    Article  Google Scholar 

  • Florussen GHJ et al (2001) Assessing geometrical errors of multi-axis machines by three-dimensional length measurements. Measurement 30(4):241–255

    Article  Google Scholar 

  • Gao W et al (2006) Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage. Precis Eng 30(1):96–103

    Article  MathSciNet  Google Scholar 

  • Givi M, Mayer JRR (2015) Volumetric error formulation and mismatch test for five-axis CNC machine compensation using differential kinematics and ephemeral G-code. Int J Adv Manuf Technol 77(9):1645–1653

    Article  Google Scholar 

  • Givi M, Mayer JRR (2016) Optimized volumetric error compensation for five-axis machine tools considering relevance and compensability. CIRP J Manuf Sci Technol 12(Suppl C):44–55

    Article  Google Scholar 

  • Grejda R, Marsh E, Vallance R (2005) Techniques for calibrating spindles with nanometer error motion. Precis Eng 29(1):113–123

    Article  Google Scholar 

  • Ibaraki S, Knapp W (2012) Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. Int J Autom Technol 6(2):110–124

    Article  Google Scholar 

  • International vocabulary of metrology – basic and general concepts and associated terms (VIM 3rd edition), JCGM 200:2012

    Google Scholar 

  • ISO 230-1:2012(E). Test code for machine tools – Part 1: geometric accuracy of machines operating under no-load or quasi-static conditions

    Google Scholar 

  • Kakino Y et al (1987) The measurement of motion errors of NC machine tools and diagnosis of their origins by using telesco** magnetic ball bar method. CIRP Ann 36(1):377–380

    Article  Google Scholar 

  • Knapp W (1983) Circular test for three-coordinate measuring machines and machine tools. Precis Eng 5(3):115–124

    Article  Google Scholar 

  • Kruth JP, Vanherck P, De Jonge L (1994) Self-calibration method and software error correction for three-dimensional coordinate measuring machines using artefact measurements. Measurement 14(2):157–167

    Article  Google Scholar 

  • Lee K-I, Lee D-M, Yang S-H (2012) Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. Int J Adv Manuf Technol 62(5):741–750

    Article  Google Scholar 

  • Lei WT, Hsu YY (2002a) Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part I: design and modeling. Int J Mach Tools Manuf 42(10):1153–1162

    Article  Google Scholar 

  • Lei WT, Hsu YY (2002b) Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part II: errors estimation. Int J Mach Tools Manuf 42(10):1163–1170

    Article  Google Scholar 

  • Mayer JRR (2012) Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact. CIRP Ann Manuf Technol 61(1):515–518

    Article  Google Scholar 

  • Okafor AC, Ertekin YM (2000a) Vertical machining center accuracy characterization using laser interferometer Part 1. Linear positional errors. J Mater Process Technol 105(Compendex):394–406

    Article  Google Scholar 

  • Okafor AC, Ertekin YM (2000b) Vertical machining center accuracy characterization using laser interferometer Part 2. Angular errors. J Mater Process Technol 105(Compendex):407–420

    Article  Google Scholar 

  • Onat Ekinci T, Mayer JRR, Cloutier GM (2009) Investigation of accuracy of aerostatic guideways. Int J Mach Tools Manuf 49(6):478–487

    Article  Google Scholar 

  • Pahk HJ, Kim YS, Moon JH (1997) New technique for volumetric error assessment of CNC machine tools incorporating ball bar measurement and 3D volumetric error model. Int J Mach Tool Manu 37(11):1583–1596

    Article  Google Scholar 

  • Qibo F et al (2013) Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide. Opt Express 21(22):25805–25819

    Article  Google Scholar 

  • Rahman MM, Mayer JRR (2015) Five axis machine tool volumetric error prediction through an indirect estimation of intra- and inter-axis error parameters by probing facets on a scale enriched uncalibrated indigenous artefact. Precis Eng 40(Suppl C):94–105

    Article  Google Scholar 

  • Schultschik R (1977) The components of volumetric accuracy. Ann CIRP 26:223–228

    Google Scholar 

  • Schwenke H et al (2008) Geometric error measurement and compensation of machines–an update. CIRP Ann Manuf Technol 57(2):660–675

    Article  Google Scholar 

  • Slamani M, Mayer JRR, Cloutier GM (2011) Modeling and experimental validation of machine tool motion errors using degree optimized polynomial including motion hysteresis. Exp Tech 35(1):37–44

    Article  Google Scholar 

  • Weikert S, Knapp W (2004) R-test, a new device for accuracy measurements on five axis machine tools. CIRP Ann Manuf Technol 53(1):429–432

    Article  Google Scholar 

  • Yang J, Mayer JRR, Altintas Y (2015) A position independent geometric errors identification and correction method for five-axis serial machines based on screw theory. Int J Mach Tools Manuf 95(Suppl C):52–66

    Article  Google Scholar 

  • Zargarbashi SHH, Mayer JRR (2006) Assessment of machine tool trunnion axis motion error, using magnetic double ball bar. Int J Mach Tools Manuf 46(14):1823–1834

    Article  Google Scholar 

  • Zargarbashi SHH, Mayer JRR (2009) Single setup estimation of a five-axis machine tool eight link errors by programmed end point constraint and on the fly measurement with Capball sensor. Int J Mach Tools Manuf 49(Compendex/10):759–766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. R. Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mayer, J.R.R. (2019). Machine Tool Calibration. In: Gao, W. (eds) Metrology. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4912-5_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4912-5_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4912-5

  • Online ISBN: 978-981-10-4912-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation