Antipredatory Defensive Role of Planktonic Marine Natural Products

  • Reference work entry
  • First Online:
Handbook of Marine Natural Products

Abstract

This chapter deals with chemical ecology and the role of antipredatory metabolites in the plankton and how such plant–herbivore interactions structure communities in the pelagic zone of the oceans. The first section deals with antiproliferative compounds produced by unicellular diatoms that induce abortions or congenital defects in the offspring of zooplankton crustaceans such as copepods exposed to them during gestation. Such teratogenic compounds include numerous oxylipins, and polyunsaturated aldehydes (PUAs) in particular, that are very similar to those produced in higher terrestrial plants. Oxylipins are believed to play a pivotal role in plant defense because they act as chemical attractors (e.g., pheromones, pollinator attraction) or alarm signals against herbivore attack (e.g., in tritrophic interactions) and as protective compounds (antibacterial, wound healing). The second section in this chapter deals with neurotoxic compounds (e.g., saxitoxins, brevetoxins, and others) produced mainly by dinoflagellates which induce severe pathologies (i.e., paralytic, neurotoxic, diarrhetic, and amnesic shellfish poisoning) in humans that consume shellfish containing high levels of these toxins and which are generally considered as feeding deterrents in the plankton. Strong physiological responses have also been reported in several copepod species after <24 h of feeding on these cells, such as elevated heart rates, regurgitation, loss of motor control, and twitching of the mouthparts, decreased feeding, decreased fecundity, delayed development, and direct mortality. Another important feeding deterrent in the plankton includes dimethylsulfoniopropionate (DMSP) found in numerous species of phytoplankton, but most prominently in the prymnesiophytes and dinoflagellates, which appears to act as a signal molecule or indicator of inferior prey rather than as a toxin. We discuss the environmental conditions which promote increased production of these metabolites and some of the classic bioassays to test their biological activity. We also discuss the multiple functions of antipredatory metabolites and the importance of chemical interactions in the plankton for sha** biodiversity and ecological functioning both at the community and cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 599.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 534.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo L, Buttino I, Mazzarella G, Laabir M, Cabrini M, Giacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    CAS  Google Scholar 

  2. Wichard T, Poulet SA, Halsband-Lenk C, Albaina A, Harris R, Liu D, Pohnert G (2005) Survey of the chemical defense potential of diatoms: screening of fifty-one species for a, b, c, d-unsaturated aldehydes. J Chem Ecol 31:949–958

    PubMed  CAS  Google Scholar 

  3. d’Ippolito G, Romano G, Iadicicco O, Miralto A, Ianora A, Cimino G, Fontana A (2002) New birth-control aldehydes from the marine diatom Skeletonema costatum: characterization and biogenesis. Tetrahedron Lett 43:6133–6136

    Google Scholar 

  4. d’Ippolito G, Romano G, Iadicicco O, Fontana A (2002) Detection of short-chain aldehydes in marine organisms: the diatom Thalassiosira rotula. Tetrahedron Lett 43:6137–6140

    Google Scholar 

  5. Fontana A, d’Ippolito G, Cutignano A, Romano G, Lamari N, Massa Gallucci A, Cimino G, Miralto A, Ianora A (2007) A metabolic mechanism for the detrimental effect of marine diatoms on zooplankton grazers. Chem Biochem 8:1810–1818

    CAS  Google Scholar 

  6. Fontana A, d’Ippolito G, Cutignano A, Miralto A, Ianora A, Romano G, Cimino G (2007) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:475–484

    Google Scholar 

  7. d’Ippolito G, Lamari N, Montresor M, Romano G, Cutignano A, Gerecht A, Cimino G, Fontana A (2009) 15 S-Lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. New Phytol 183:1064–1071

    PubMed  Google Scholar 

  8. Steinke M, Stefels J, Stamhuis E (2006) Dimethyl sulfide triggers search behavior in copepods. Limnol Oceanogr 51:1925–1930

    CAS  Google Scholar 

  9. Shaw BA, Anderson RJ, Harrison PJ (1995) Feeding deterrence properties of apo-fucoxanthinoids from marine diatoms. I. Chemical structuresof apo-fucoxanthinoids produced by Phaeodactylum tricornutum. Mar Biol 124:467–472

    Google Scholar 

  10. Shaw BA, Anderson RJ, Harrison PJ (1995) Feeding deterrence properties of apo-fucoxanthinoids from marine diatoms. II. Physiology of production of apo-fucoxanthinoids by the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, and their feeding deterrent effects on the copepod Tigriopus californicus. Mar Biol 124:473–481

    CAS  Google Scholar 

  11. Selander E, Thor P, Toth G, Pavia H (2006) Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc R Soc Lond B Biol Sci 273:1673–1680

    CAS  Google Scholar 

  12. Ban S, Burns C, Castel C, Christou E, Escribano R, Fonda Umani F, Gasparini S, Guerrero Ruiz F et al (1997) The paradox of diatom-copepod interactions. Mar Ecol Prog Ser 157:287–293

    Google Scholar 

  13. Night AP, Walter RG (2004) Plants associated with congenital defects and reproductive failure. In: Knight AP, Walter RG (eds) A guide to plant poisoning of animals in North America. Teton NewMedia, Jackson

    Google Scholar 

  14. Pohnert G (2000) Wound-activated chemical defence in unicellular planktonic algae. Angew Chem Int Ed 39:4352–4354

    CAS  Google Scholar 

  15. d’Ippolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miralto A, Fontana A (2004) The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim Biophys Acta 1686:100–107

    PubMed  Google Scholar 

  16. Cutignano A, d’Ippolito G, Romano G, Cimino G, Febbraio F, Nucci R, Fontana A (2006) Chloroplastic galactolipids fuel the aldehyde biosynthesis in the marine diatom Thalassiosira rotula. Chem BioChem 7:450–456

    CAS  Google Scholar 

  17. Caldwell GS (2009) The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar Drugs 7:367–400

    PubMed  CAS  Google Scholar 

  18. Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206:3487–3494

    PubMed  Google Scholar 

  19. Hansen E, Ernsten A, Eilersten HC (2004) Isolation and characterization of cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim. Toxicology 199:207–217

    PubMed  CAS  Google Scholar 

  20. Ianora A, Poulet SA, Miralto A (2003) The effects of diatoms on copepod reproduction: a review. Phycologia 42:351–363

    Google Scholar 

  21. Caldwell GS, Watson SB, Bentley MG (2004) How to assess toxin ingestion and pos-ingestion partitioning in zooplankton? J Plankton Res 26:1369–1377

    CAS  Google Scholar 

  22. Romano G, Miralto A, Ianora A (2010) Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar Drugs 8:950–967

    PubMed  CAS  Google Scholar 

  23. Ianora A, Miralto A, Poulet SA, Carotenuto Y, Buttino I, Romano G, Casotti R, Pohnert G, Wichard T, Colucci-D’Amato L, Terrazzano G, Smetacek V (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407

    PubMed  CAS  Google Scholar 

  24. Casotti R, Mazza S, Brunet C, Vantrepotte V, Ianora A, Miralto A (2005) Growth inhibition and toxicity of the algal aldehyde 2-trans-2-cis decadienal on Thalassiosira weissflogii (Bacillariophyceae). J Phycol 41:7–20

    CAS  Google Scholar 

  25. Ribalet F, Berges JA, Ianora A, Casott R (2007) Growth inhibition of cultured marine phytoplankton by algal-derived polyunsaturated aldehydes. Aquat Toxicol 85:219–227

    PubMed  CAS  Google Scholar 

  26. Vardi A, Formiggini F, Casottti R, De Martino A, Ribalet F, Miralto A, Bowler C (2006) A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol 4:411–419

    CAS  Google Scholar 

  27. Vardi A, Bidle K, Kwityn C, Hirsh DJ, Thompson SM, Callow JA, Falkowski P, Bowler C (2008) A diatom gene regulating nitricoxide signaling and susceptibility to diatom-derived aldehydes. Curr Biol 18:895–899

    PubMed  CAS  Google Scholar 

  28. Ribalet F, Intertaglia L, Lebaron F, Casotti R (2008) Differential effects of three polyunsaturated aldehydes on marine bacterial isolates. Aquat Toxicol 86:249–255

    PubMed  CAS  Google Scholar 

  29. Vidoudez C, Pohnert G (2008) Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J Plankton Res 30:1305–1313

    CAS  Google Scholar 

  30. Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 19:493–511

    PubMed  CAS  Google Scholar 

  31. Carotenuto Y, Wichard T, Pohnert G, Lampert W (2005) Life-history responses of Daphnia pulicaria to diets containing freshwater diatoms: effects of nutritional quality versus polyunsaturated aldehydes. Limnol Oceanogr 50:449–454

    CAS  Google Scholar 

  32. Caldwell GS, Bentley MG, Olive PJW (2002) Inhibition of embryonic development and fertilization in broadcast spawning marine invertebrates by water soluble diatom extracts and the diatom toxin 2-trans, 4-trans decadienal. Aquat Toxicol 60:123–137

    PubMed  CAS  Google Scholar 

  33. Tosti E, Romano G, Buttino I, Cuomo A, Ianora A, Miralto A (2003) Bioactive aldehydes from diatoms block fertilization currents in ascidian oocytes. Mol Reprod Dev 66:72–80

    PubMed  CAS  Google Scholar 

  34. Adolph S, Bach S, Blondel M, Cueff A, Moreau M, Pohnert G, Poulet SA (2004) Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. J Exp Biol 207:2935–2946

    PubMed  CAS  Google Scholar 

  35. Taylor RL, Caldwell GS, Dunstan HG, Bentley MG (2007) Short term impacts of polyunsaturated aldehyde-producing diatoms on the harpacticoid copepod, Tisbe holothuriae. J Exp Mar Biol Ecol 341:60–69

    CAS  Google Scholar 

  36. Blée E (1998) Phytooxylipins and plant defense reactions. Prog Lipid Res 37:33–72

    PubMed  Google Scholar 

  37. Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321

    PubMed  Google Scholar 

  38. Jüttner F, Durst U (1997) High lipoxygenase activities in epilithic biofilms of diatoms. Archiv für Hydrobiologie 138:451–463

    Google Scholar 

  39. Pohnert G (2005) Diatom-Copepod interactions in plankton: the indirect chemical defense of unicellular algae. Chem Biochem 6:1–14

    Google Scholar 

  40. Pohnert G (2002) Phospholipase A2 activity triggers the wound-activated chemical defence in the diatom Thalassiosira rotula. Plant Physiol 129:103–111

    PubMed  CAS  Google Scholar 

  41. d’Ippolito G, Cutignano A, Tucci S, Romano G, Cimino G, Fontana A (2006) Biosynthetic intermediates and stereochemical aspects of aldehyde biosynthesis in the marine diatom Thalassiosira rotula. Phytochemistry 67:314–322

    PubMed  Google Scholar 

  42. Wichard T, Gerecht A, Boersma M, Poulet SA, Wiltshire K, Pohnert G (2007) Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. Chem BioChem 8:1146–1153

    CAS  Google Scholar 

  43. d’Ippolito G, Cutignano A, Briante R, Febbraio F, Cimino G, Fontana A (2005) New C16 fatty-acid-based oxylipin pathway in the marine diatom Thalassiosira rotula. Org Biomol Chem 3:4065–4070

    PubMed  Google Scholar 

  44. Pohnert G, Lumineau O, Cueff A, Adolph S, Cordevan C, Lange M, Poulet S (2002) Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods? Mar Ecol Prog Ser 245:33–45

    CAS  Google Scholar 

  45. Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    PubMed  CAS  Google Scholar 

  46. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    PubMed  CAS  Google Scholar 

  47. Ianora A, Romano G, Carotenuto Y, Esposito F, Roncalli V, Buttino I, Miralto A (2011) Impact of the diatom oxylipin 15 S-HEPE on the reproductive success of the copepod Temora stylifera. Hydrobiologia. doi:10.1007/s10750-010-0420-7

    Google Scholar 

  48. Ianora A, Casotti R, Bastianini M, Brunet C, d’Ippolito G, Fontana A, Cutignano A, Turner JT, Miralto A (2008) Low reproductive success in copepod communities during a bloom of the diatom Cerataulina pelagica in the North Adriatic Sea. Mar Ecol 29:399–410

    Google Scholar 

  49. Jüttner F (2005) Evidence that polyunsaturated aldehydes of diatoms are repellent for pelagic crustacean grazers. Aquat Ecol 39:271–282

    Google Scholar 

  50. Watson SB, Satchwill T (2003) Chrysophyte odour production: resource-mediated changes at the cell population levels. Phycologia 42:393–405

    Google Scholar 

  51. Fink P (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar Freshw Behav Phy 40:155–168

    CAS  Google Scholar 

  52. Watson SB (2003) Cyanobacterial and eukaryoticalgal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332–350

    Google Scholar 

  53. Ianora A, Miralto A, Buttino I, Poulet SA, Romano G (1999) First evidence of some dinoflagellates reducing male copepod fertilization capacity. Limnol Oceanogr 44:147–153

    Google Scholar 

  54. Ianora A, Turner JT, Esposito F, d’Ippolito G, Romano G, Guisande C, Carotenuto Y, Miralto A (2004) Copepod egg hatching success is reduced by maternal diets of a non-neurotoxic strain of the dinoflagellate Alexandium tamarense. Mar Ecol Prog Ser 280:199–210

    Google Scholar 

  55. Murakami M, Makabe K, Yamaguchi K, Konosu S (1988) Goniodomin A, a novel polyether macrolide from the dinoflagellate Goiniodoma pseudogoniaulax. Tetrahedron Lett 29:1149–1152

    CAS  Google Scholar 

  56. Kobayashi J, Ishibashi M, Nakamura H, Ohizumi Y, Yamasu T, Sasaki T, Hirata Y (1986) Amphidinolide-A, a novel antineoplastic macrolide from the marine dinoflagellate Amphidinium sp. Tetrahedron Lett 27:5755–5758

    CAS  Google Scholar 

  57. Fujiki H, Suganuma M, Suguri H, Yoshizawa S et al (1988) Diarrhetic shelfish toxin, dinophysistoxin-1, is a potent tumor promoter on mouse skin. Jpn J Cancer Res 79:1089–1093

    PubMed  CAS  Google Scholar 

  58. Yan T, Mingjiang Z, Fu M, Wang Y, Yu R, Li J (2001) Inhibition of egg hatching success and larval survival of the scallop, Chlamys farreri, associated with exposure to cells and cell fragments of the dinoflagellate Alexandrium tamarense. Toxicon 39:1239–1244

    PubMed  CAS  Google Scholar 

  59. Granéli E, Turner JT (2008) Ecology of harmful algae. Springer, Berlin/Heidelberg

    Google Scholar 

  60. Burkholder JM (2009) Harmful algal blooms. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, New York, pp 264–285

    Google Scholar 

  61. Turner JT, Tester PA (1997) Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol Oceanogr 42:1203–1214

    Google Scholar 

  62. Colin SP, Dam HG (2003) Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Mar Ecol Prog Ser 248:55–65

    Google Scholar 

  63. Sykes PF, Huntley MA (1987) Acute physiological reactions of Calanus pacificus to selected dinoflagellates: direct observations. Mar Biol 94:19–24

    Google Scholar 

  64. Teegarden GJ (1999) Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Mar Ecol Prog Ser 181:163–176

    CAS  Google Scholar 

  65. Guisande C, Frangópulos M, Carotenuto Y, Maneiro I, Riveiro I, Vergara AR (2002) Fate of paralytic shellfish poisoning toxins ingested by the copepod Acartia clausi. Mar Ecol Prog Ser 240:105–115

    CAS  Google Scholar 

  66. Frangópulos M, Guisande C, Maneiro I, Riveiro I, Franco J (2000) Short-term and long-term effects of the toxic dinoflagellate Alexandrium minutum on the copepod Acartia clausi. Mar Ecol Prog Ser 203:161–169

    Google Scholar 

  67. Turriff N, Runge JA, Cembella AD (1995) Toxin accumulation and feeding behaviour of the planktonic copepod Calanus finmarchicus exponed to the red-tide dinoflagellate Alexandrium excavatum. Mar Biol 123:55–64

    CAS  Google Scholar 

  68. Cembella AD (2003) Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447

    Google Scholar 

  69. Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA et al (eds) Herbivores: their interaction with secondary plant metabolites. Academic, New York

    Google Scholar 

  70. Van Donk E, Ianora A, Vos M (2011) Induced defenses in marine and freshwater phytoplankton: a review. Hydrobiologia. doi:10.1007/s10750-010-0395-4

    Google Scholar 

  71. Selander E, Cervin G, Pavia H (2008) Effects of nitrate and phosphate on grazer-induced toxin production in Alexandrium minutum. Limnol Oceanogr 53:523–530

    CAS  Google Scholar 

  72. Bhakuni DS, Rawat DS (2005) Bioactive marine natural products. Springer, New York and Anamaya Publishers, New Delhi, India

    Google Scholar 

  73. Teegarden GJ, Cembella AD (1996) Grazing of toxic dinoflagellates, Alexandrium spp., by adult copepods of coastal Maine: implications for the fate of paralytic shellfish toxins in marine food webs. J Exp Mar Biol Ecol 196:145–176

    Google Scholar 

  74. Lauritano C, Borra M, Carotenuto Y, Biffali E, Miralto A, Pracaccini G, Ianora A (2011) Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods. PLoS ONE 6:e26850

    Google Scholar 

  75. Colin SP, Dam HG (2005) Testing for resistance of pelagic marine copepods to a toxic dinoflagellate. Evol Ecol 18:355–377

    Google Scholar 

  76. Tester PA, Turner JT, Shea D (2000) Vectorial transport of toxins the dinoflagellate Gymnodinium breve through copepods to fish. J Plankton Res 22:47–61

    CAS  Google Scholar 

  77. Doucette GJ, Turner JT, Powell CL, Keafer BA, Anderson DM, ECOHAB-Gulf of Maine (2005) Trophic accumulation of PSP toxins in zooplankton during Alexandrium fundyense blooms in Casco Bay, Gulf of Maine, April–June 1998. I. Toxin levels in A. fundyense and zooplankton size fractions. Deep Sea Res II 52:2764–2783

    Google Scholar 

  78. Cimino G, Ghiselin MT (2001) Marine natural products chemistry as an evolutionary narrative. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 115–154

    Google Scholar 

  79. Shaw BA, Anderson RJ, Harrison PJ (1997) Feeding deterrent and toxicity effects of apo-fucoxanthinoids and phycotoxins on a marine copepod (Tigriopus californicus). Mar Biol 128:273–280

    CAS  Google Scholar 

  80. Maneiro I, Iglesias P, Guisande C, Riveiro I, Barreiro A, Zervoudaki S, Granéli E (2005) Fate of domoic acid ingested by the copepod Acartia clausi. Mar Biol 148:123–130

    CAS  Google Scholar 

  81. Olson MB, Lessard EJ, Wong CHJ, Bernhardt MJ (2006) Copepod feeding selectivity on the microplankton, including the toxigenic diatom, Pseudo-nitzschia spp., in the coastal Pacific Northwest. Mar Ecol Prog Ser 326:207–220

    Google Scholar 

  82. Olson MB, Lessard EJ, Cochlan WP, Trainer VL (2008) Intrinsic growth and microzooplankton grazing on toxigenic Pseudo-nitzschia spp. diatoms from the coastal northeast Pacific. Limnol Oceanogr 53:1352–1368

    Google Scholar 

  83. Bargu S, Lefebvre K, Silver MW (2006) Effect of dissolved domoic acid on the grazing rate of krill Euphausia pacifica. Mar Ecol Prog Ser 312:169–175

    CAS  Google Scholar 

  84. Manning SR, La Claire JW II (2010) Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar Drugs 8:678–704

    PubMed  CAS  Google Scholar 

  85. Sopanen S, Koski M, Kuuppo P, Uronen P, Legrand C, Tamminen T (2006) Toxic haptophyte Prymnesium parvum affects grazing, survival, egestion and egg production of the calanoid copepods Eurytemora affinis and Acartia bifilosa. Mar Ecol Prog Ser 327:223–232

    CAS  Google Scholar 

  86. Sopanen S, Koski M, Uronen P, Kuuppo P, Lehtinen S, Legrand C, Tamminen T (2008) Prymnesium parvum exotoxins affect the grazing and viability of the calanoid copepod Eurytemora affinis. Mar Ecol Prog Ser 361:191–202

    Google Scholar 

  87. Waggett RJ, Tester PA, Place AR (2008) Anti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator–prey interactions with the copepod Acartia tonsa. Mar Ecol Prog Ser 366:31–42

    Google Scholar 

  88. Baden DG (1989) Brevetoxins: unique polyether dinoflagellate toxins. FASEB J 3:1807–1817

    PubMed  CAS  Google Scholar 

  89. Poulson KL, Sieg D, Kubanek J (2009) Chemical ecology of the plankton. Nat Prod Rep 26:729–745

    PubMed  CAS  Google Scholar 

  90. Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser 230:47–58

    CAS  Google Scholar 

  91. Tillmann U, John U, Cembella A (2007) On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 29:527–543

    Google Scholar 

  92. Ma H, Krock B, Tillmann U, Cembella A (2009) Preliminary characterization of extracellular allelochemicals of the toxic marine dinoflagellate Alexandrium tamarense using a Rhodomonas salina assay. Mar Drugs 7:497–522

    PubMed  CAS  Google Scholar 

  93. Tillmann U, Hansen PJ (2009) Allelopathic effects of Alexandrium tamarense on other algae: evidence from mixed growth experiments. Aquat Microbial Ecol 57:101–112

    Google Scholar 

  94. Keller MD, Bellows WK, Guillard RRL (1989) Dimethylsulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington, DC, pp 167–183

    Google Scholar 

  95. Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defense in a unicellular marine alga. Nature 387:894–897

    CAS  Google Scholar 

  96. Strom SL, Wolfe GV, Slajer A et al (2003) Chemical defense in the microplankton II: inhibition of protist feeding by b-dimethylsulfoniopropionate. Limnol Oceanogr 48:230–237

    CAS  Google Scholar 

  97. Fredrickson KA, Strom SL (2009) The algal osmolyte DMSP as a microzooplankton grazing deterrent in laboratory and field studies. J Plankton Res 31:135–152

    Google Scholar 

  98. Wolfe GV, Sherr EB, Sherr BS (1994) Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Mar Ecol Prog Ser 111:111–119

    CAS  Google Scholar 

  99. Nejstagaard JC, Gismervik I, Solberg PT (1997) Feeding and reproduction by Calanus finmarchicus and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 147:197–217

    Google Scholar 

  100. Strom SL, Wolfe GV, Holmes J et al (2003) Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS producing phytoplankter Emiliania huxleyi. Limnol Oceanogr 48:217–229

    CAS  Google Scholar 

  101. Tang KW, Jakobsen HH, Visser AW (2001) Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth and trophic interactions among grazers. Limnol Oceanogr 46:1860–1870

    Google Scholar 

  102. Turner JT, Ianora A, Esposito F, Carotenuto Y, Miralto A (2002) Zooplankton feeding ecology: does a diet of Phaeocystis globosa support good copepod survival, egg production and egg hatching success? J Plankton Res 24:1185–1195

    Google Scholar 

  103. Long JD, Smalley GW, Barsby T, Anderson JT, Hay ME (2007) Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. Proc Natl Acad Sci USA 104:10512–10517

    PubMed  CAS  Google Scholar 

  104. Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212

    Google Scholar 

  105. Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158:21–28

    PubMed  CAS  Google Scholar 

  106. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C et al (2003) Diatom cells are mechanically protected by their strong, lightweight, silica shells. Nature 421:841–843

    PubMed  CAS  Google Scholar 

  107. Steinke M, Malin G, Liss PS (2002) Tritrophic interactions in the sea: an ecological role for climate relevant volatiles. J Phycol 38:630–638

    CAS  Google Scholar 

  108. Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defence metabolites and the sha** of pelagic interspecific interactions. Trends Ecol Evol 22:198–204

    PubMed  Google Scholar 

  109. Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Google Scholar 

  110. Kirst GO, Wolff CH, Nothnagel J et al (1991) Dimethyl-sulfonioipropionate (DMSP) in ice algae and its possible biological role. Mar Chem 35:381–388

    CAS  Google Scholar 

  111. Sunda WG, Kieber DJ, Kiene RP et al (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    PubMed  CAS  Google Scholar 

  112. Bucciarelli E, Sunda WG (2003) Influence of CO2, nitrate, phosphate, and silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the coastal diatom Thalassiosira pseudonana. Limnol Oceanogr 48:2256–2265

    CAS  Google Scholar 

  113. van Rijssel M, Gieskes WWC (2002) Temperature, light, and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae). J Sea Res 48:17–27

    Google Scholar 

  114. Granéli E, Flynn K (2006) Chemical and physical factors influencing toxin content. In: Granéli E, Turner JT (eds) Ecological studies, vol 189, Ecology of harmful algae. Springer, Berlin/Heidelberg, pp 229–241

    Google Scholar 

  115. Bates SS (1998) Ecophysiology and metabolism of ASP toxin production. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, NATO ASI Series 41. Springer, Berlin/Heidelberg/New York, pp 405–426

    Google Scholar 

  116. Ribalet F, Vidoudez C, Cassin D, Pohnert G, Ianora A, Miralto A, Casotti R (2009) High plasticity in the production of diatom derived polyunsaturated aldehydes under nutrient limitation: physiological and ecological implications. Protist 160:444–451

    PubMed  CAS  Google Scholar 

  117. Shilo M (1981) The toxic principles of Prymnesium parvum. In: Carmichael WW (ed) The water environment: algal toxins and health, vol 20. Plenum, New York, pp 37–47

    Google Scholar 

  118. Granéli E, Johansson N, Panosso R (1998) Cellular toxin contents in relation to nutrient conditions for different groups of phycotoxins. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and Intergovern. Oceanographic Comm. of UNESCO, Paris, pp 321–324

    Google Scholar 

  119. Flynn KJ (2002) Toxin production in migrating dinoflagellates: a modelling study of PSP producing Alexandrium. Harmful Algae 1:147–155

    CAS  Google Scholar 

  120. Flynn KJ, Flynn K (1995) Dinoflagellate physiology, nutrient stress and toxicity. In: Lassus P, Arzul G, Le Denn EE, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier Intercept, Paris, pp 541–550

    Google Scholar 

  121. John EH, Flynn KJ (2000) Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N:P supply ratios on internal toxin and nutrient levels. Eur J Phycol 35:11–23

    Google Scholar 

  122. Cembella AD (1998) Ecophysiology and metabolism of paralytic shellfish toxins in marine microalgae. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, NATO ASI Series 41. Springer, Berlin/Heidelberg/New York, pp 381–403

    Google Scholar 

  123. Flynn K, Franco JM, Fernández P, Reguera B, Zapata M, Wood G, Flynn KJ (1994) Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen and phosphorus stress. Mar Ecol Prog Ser 111:99–109

    CAS  Google Scholar 

  124. John EH, Flynn KJ (1999) Amino acid uptake by the toxic dinoflagellate Alexandrium fundyense. Mar Biol 133:11–20

    CAS  Google Scholar 

  125. Lundholm N, Hansen PJ, Kotaki Y (2004) Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser 273:1–15

    CAS  Google Scholar 

  126. Maldonado MT, Hughes MP, Rue EL, Wells ML (2002) The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzschia australis. Limnol Oceanogr 47:515–526

    CAS  Google Scholar 

  127. Anderson DM (1994) Red tides. Sci Am 271:52–58

    Google Scholar 

  128. Johansson N, Granéli E (1999) Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar Biol 135:209–217

    CAS  Google Scholar 

  129. Johansson N, Granéli E, Yasumoto T, Carlsson P, Legrand C (1996) Toxin production by Dinophysis acuminata and D. acuta cells grown under nutrient sufficient and deficient conditions. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. IOC-UNESCO, Paris, pp 277–280

    Google Scholar 

  130. de Boer MK, Tyl MR, Vrieling EG, van Rijssel M (2004) Effects of salinity and nutrient conditions on growth and haemolytic activity of Fibrocapsa japonica (Raphidophyceae). Aquat Microb Ecol 37:171–181

    Google Scholar 

  131. Flynn KJ, Flynn K, John EH, Reguera B, Reyero MI, Franco JM (1996) Changes in toxins, intracellular and dissolved free amino acids of the toxic dinoflagellate Gymnodinium catenatum in response to changes in inorganic nutrients and salinity. J Plankton Res 18:2093–2111

    CAS  Google Scholar 

  132. Twiner MJ, Trick CG (2000) Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo. J Plankton Res 22:1961–1975

    CAS  Google Scholar 

  133. Glibert PM, Terlizzi DE (1999) Co-occurrence of elevated urea levels and dinoflagellate blooms in temperature estuarine aquaculture ponds. Appl Environ Microbiol 65:5594–5596

    PubMed  CAS  Google Scholar 

  134. Granéli E (2004) Toxic algae – a global problem. HavsUtsikt 2:12–13 (in Swedish)

    Google Scholar 

  135. Johansson N, Granéli E (1999) Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semicontinuous cultures. J Exp Mar Biol Ecol 239:243–258

    CAS  Google Scholar 

  136. Legrand C, Johansson N, Johnsen G, Borsheim KY, Granéli E (2001) Phagotrophy and toxicity variation in the mixotrophic Prymnesium patelliferum (Haptophyceae). Limnol Oceanogr 46:1208–1214

    Google Scholar 

  137. Ribalet F, Wichard T, Pohnert G, Ianora A, Miralto A, Casotti R (2007) Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68:2059–2067

    PubMed  CAS  Google Scholar 

  138. Ceballos S, Ianora A (2003) Different diatoms induce contrasting effects in the copepod Temora stylifera. J Exp Mar Biol Ecol 294:189–202

    Google Scholar 

  139. Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Google Scholar 

  140. Turner JT, Ianora A, Miralto A, Laabir M, Esposito F (2001) Decoupling of copepod grazing rates, fecundity and egg hatching success on mixed and alternating diatom and dinoflagellate diets. Mar Ecol Prog Ser 220:187–199

    Google Scholar 

  141. Buttino I, De Rosa G, Carotenuto Y, Ianora A, Fontana A, Quaglia F, La Rotonda MI, Miralto A (2006) Giant liposomes as delivery system for ecophysiological studies in copepods. J Exp Biol 209:801–809

    PubMed  CAS  Google Scholar 

  142. Buttino I, De Rosa G, Carotenuto Y, Mazzela M, Ianora A, Esposito F, Vitiello V, Quaglia F, La Rotonda MI, Miralto A (2008) Aldehyde-encapsulating liposomes impair marine grazer survivorship. J Exp Biol 211:1426–1433

    PubMed  CAS  Google Scholar 

  143. Miralto A, Ianora A, Poulet SA, Romano G, Laabir M (1996) Is fertility modified by overcrowding in the copepod Centropages typicus? J Plankton Res 18:1033–1040

    Google Scholar 

  144. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    PubMed  CAS  Google Scholar 

  145. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    PubMed  CAS  Google Scholar 

  146. Yang I, John U, Beszteri S, Glöckner G, Krock B, Goesmann A, Cembella AD (2010) Comparative gene expression in toxic versus non-toxic strains of the marine dinoflagellate Alexandrium minutum. BMC Genomics 11:248

    PubMed  Google Scholar 

  147. Alpermann TJ, Tillmann U, Beszteri B, Cembella AD, John U (2010) Phenotypic variation and genotypic diversity in a planktonic population of the toxigenic marine dinoflagellate Alexandrium tamarense (Dinophyceae). J Phycol 46:18–32

    CAS  Google Scholar 

  148. Barofsky A, Vidoudez C, Pohnert G (2009) Metabolic profiling reveals growth stage variability in diatom exudates. Limnol Oceanogr Methods 7:382–390

    CAS  Google Scholar 

  149. Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134:708–713

    PubMed  CAS  Google Scholar 

  150. Sieg RD, Poulson-Ellestada KL, Kubanek J (2011) Chemical ecology of the marine plankton. Nat Prod Rep. doi:10.1039/c0np00051e

    Google Scholar 

  151. Izhaki I (2002) Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytologist 155:205–217

    Google Scholar 

  152. Ianora A, Bentley MG, Caldwell GS, Casotti R, Cembella AD, Engström-Öst J, Halsband C, Sonnenschein E, Legrand C, Llewellyn CA, Paldavičienë A, Pilkaityte R, Pohnert G, Razinkovas A, Romano G, Tillmann U, Vaiciute D (2011) The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar Drugs 9:1625–1648

    Google Scholar 

Download references

Acknowledgments

We thank Flora Palumbo of the Functional and Evolutionary Ecology Laboratory of Stazione Zoologica Anton Dohrn for figures and drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrianna Ianora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Ianora, A., Miralto, A., Romano, G. (2012). Antipredatory Defensive Role of Planktonic Marine Natural Products. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_13

Download citation

Publish with us

Policies and ethics

Navigation