Stromatolites

  • Reference work entry
  • First Online:
Encyclopedia of Astrobiology
  • 58 Accesses

Synonyms

Fossilized microbial mats; Living stromatolites; Microbialites; Modern stromatolites

Definition

Stromatolites are morphologically circumscribed accretionary growth structures with a primary lamination that is, or may be, biogenic. They form centimeter- to decimeter-scale domes, cones, columns, and planiform surfaces made of carbonate layers. Stromatolites accrete through a combination of microbially mediated sediment trap** and binding and by the precipitation of carbonate crusts that may be due to microbial mat growth and/or be purely abiotic in origin. Stromatolites provide the oldest macrofossil evidence of life on earth and sometimes host important microfossil occurrences. Images of macroscopically layered stromatolites obtained by rovers on other planetary surfaces may yet provide some of the first evidences of life beyond earth.

History

The term “stromatolith” was first used just over a century ago by Kalkowsky (1908) and derived from the Greek words stroma meaning...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of early Archean stromatolites. Proc Natl Acad Sci U S A 106:9548–9555

    Article  ADS  Google Scholar 

  • Allwood AC, Rosing MT, Flannery DT, Hurowitz JA, Heirwegh CM (2018) Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563(7730):241–244

    Article  ADS  Google Scholar 

  • Allwood AC, Wade LA, Foote MC, Elam WT, Hurowitz JA, Battel S et al (2020) PIXL: planetary instrument for X-ray lithochemistry. Space Sci Rev 216(8):1–132

    Article  Google Scholar 

  • Awramik SM, Margulis L (1974) Definition of stromatolite. Stromatolite Newsl 2:1–5

    Google Scholar 

  • Awramik SM, Semikhatov MA (1978) The relationship between morphology, microstructure and microbiota in three vertically intergrading stromatolites from the gunflint iron formation. Can J Earth Sci 16:484–495

    Article  Google Scholar 

  • Batchelor MT, Burne RV, Henry BI, Jackson MJ (2004) A case for biotic morphogenesis of coniform stromatolites. Phys A 337:319–326

    Article  Google Scholar 

  • Bosak T, Souza-Egipsy V, Corsetti FA, Newman DK (2004) Micrometer-scale porosity as a biosignature in carbonate crusts. Geology 32:781–784

    Article  ADS  Google Scholar 

  • Bosak T, Liang B, Sim MS, Petroff AP (2009) Morphological record of oxygenic photosynthesis in conical stromatolites. Proc Natl Acad Sci U S A 106:10939–10943

    Article  ADS  Google Scholar 

  • Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44

    Article  ADS  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77

    Article  ADS  Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an early Archaean chert-barite unit from North Pole Western Australia. Alcheringa 5:161–181

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites; organosedimentary deposits of benthic microbial communities. Palios 2:241–254

    Article  ADS  Google Scholar 

  • Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8(1):1–9

    Google Scholar 

  • Freytet P, Verrecchia EP (1998) Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology 45:535–563

    Article  ADS  Google Scholar 

  • Golubic S, Seong-Joo L, Browne KM (2000) Cyanobacteria: architects of sedimentary structures. In: Riding RE, Awramik SM (eds) Microbial sediment. Springer, Berlin, pp 57–67

    Chapter  Google Scholar 

  • Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. J Geophys Res 101:235–243

    Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates; evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Article  ADS  Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383:423–425

    Article  ADS  Google Scholar 

  • Hofmann HJ (2000) Archaean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 315–327

    Chapter  Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group. Western Australia Geol Soc Am Bull 111:1256–1262

    Article  Google Scholar 

  • Hohl SV, Viehmann S (2021) Stromatolites as geochemical archives to reconstruct microbial habitats through deep time: potential and pitfalls of novel radiogenic and stable isotope systems. Earth Sci Rev:103683

    Google Scholar 

  • Jogi PM, Runnegar B (2005) Quantitative methods for evaluating the biogenicity of fossil stromatolites. Astrobiology 5:293

    Google Scholar 

  • Kalkowsky E (1908) Oolith und stromatolilith in norddeutschen Buntsandstein. Z Dtsch Geol Ges 60:68–125

    Google Scholar 

  • Krumbein WE (1983) Stromatolites: the challenge of a term in space and time. Precambrian Res 20:493–531

    Article  ADS  Google Scholar 

  • Lepot K, Benzerara K, Rividi N, Cotte M, Brown GE Jr, Philippot P (2009) Organic matter heterogeneities in 2.72 Ga stromatolites: alteration versus preservation by sulfur incorporation. Geochim Cosmochim Acta 73(21):6579–6599

    Article  ADS  Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387

    Article  ADS  Google Scholar 

  • McLoughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology 6:95–105

    Article  Google Scholar 

  • Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537(7621):535–538

    Article  ADS  Google Scholar 

  • Peters SE, Husson JM, Wilcots J (2017) The rise and fall of stromatolites in shallow marine environments. Geology 45(6):487–490

    Article  ADS  Google Scholar 

  • Pia J (1927) Abteilung: thallophyta. In: Hirmer M (ed) Handbuch der Palaobotanik. R. Oldenbourg, Munich, pp 31–136

    Google Scholar 

  • Pope MC, Grotzinger JP (2000) Controls on fabric development and morphology of tufas and stromatolites, uppermost Pethei group 1.8 Ga, Great Slave Lake, NW Canada. In: James NP, Grotzinger JP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world, SEPM Special Publication, vol 67. Geological Society, London, pp 103–121

    Chapter  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  ADS  Google Scholar 

  • Reid PR, James NP, Macintyre IG, Dupraz CP, Buren RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324

    Article  Google Scholar 

  • Riding R (1999) The term stromatolite: towards an essential definition. Lethaia 32:321–330

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl 1):179–214

    Article  Google Scholar 

  • Riding R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol Croat 61(2–3):73–103

    Article  Google Scholar 

  • Riding R, Liang L (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography. Palaeoclimatol Palaeoecol 219:101–115

    Article  ADS  Google Scholar 

  • Riding R, Voronova L (1984) Assemblages of calcareous algae near the Precambrian/Cambrian boundary in Siberia and Mongolia. Geol Mag 121:205–210

    Article  ADS  Google Scholar 

  • Rividi N, van Zuilen M, Philippot P, Ménez B, Godard G, Poidatz E (2010) Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration. Astrobiology 10:293–309

    Article  ADS  Google Scholar 

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis: progress and problems. Can J Earth Sci 16:992–1015

    Article  Google Scholar 

  • Shapiro RS (2005) A field guide to microbialtes. In: Stevens C, Cooper J (eds) Western Great Basin geology. Pacific Section American Association of Petroleum Geologists, Fullerton, pp 68–80, Guidebook 99

    Google Scholar 

  • Shepard RN, Sumner DY (2010) Undirected motility of filamentous cyanobacteria produces reticulate mats. Geobiology 8:179–190

    Article  Google Scholar 

  • Sumner DY (1997) Late Archaean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. PALAIOS 12:300–316

    Article  ADS  Google Scholar 

  • Suosaari EP, Reid RP, Andres MS (2019) Stromatolites, so what?! A tribute to Robert N. Ginsburg. The Depositional Record 5(3):486–497

    Article  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552

    Article  ADS  Google Scholar 

  • Turner EC, James NP, Narbonne GM (2000a) Taphonomic control on microstructure in early Neoproterozoic reefal stromatolites and thrombolites. PALAIOS 15:87–111

    Article  ADS  Google Scholar 

  • Turner EC, Narbonne GM, James NP (2000b) Framework composition of early NeoProterozoic calcimicrobial reefs and associated microbialites, Mackenzie Mountains, N.W.T., Canada. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world, vol 67, SEPM Special Publication. Geological Society, London, pp 103–121

    Google Scholar 

  • Van Kranendonk MJ (2007) A review of the evidence for putative Paleoarchean life in the Pilbara Craton, Western Australia. In: Van Kranendonk MJ, Smithies HR, Bennett VC (eds) Earth’s oldest rocks, vol 15, Developments in Precambrian geology. Elsevier, Amsterdam

    Google Scholar 

  • Vanyo JP, Awramik SM (1985) Stromatolites and earth-sun-moon dynamics. Precambrian Res 2:121–142

    Article  Google Scholar 

  • Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulphate reduction: correlation of microbial activity with lithified micrite laminae in modern marine stromatolites. Geology 28:919–922

    Article  ADS  Google Scholar 

  • Wacey D (2009) Early life on earth. Springer, Dordrecht, p 274

    Book  Google Scholar 

  • Wacey D (2010) Stromatolites in the 3400 Ma Strelley pool formation, Western Australia: examining biogenicity from the macro to nano scale. Astrobiology 10:381–395

    Article  ADS  Google Scholar 

  • Wacey D, Gleeson D, Kilburn MR (2010) Microbialite taphonomy and biogenicity: new insights from NanoSIMS. Geobiology 8:403–416

    Article  Google Scholar 

  • Wagstaff KL, Corsetti FA (2010) An evaluation of information – theoretic methods for detecting structural microbial biosignatures. Astrobiology 10:363–379

    Article  ADS  Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of metazoa and the decline of stromatolites. Precambrian Res 29:149–174

    Article  ADS  Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In: Walter MR (ed) Stromatolites. Elsevier, New York, pp 273–310

    Chapter  Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites, 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola McLoughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McLoughlin, N. (2023). Stromatolites. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65093-6_1528

Download citation

Publish with us

Policies and ethics

Navigation