Archaean Traces of Life

  • Reference work entry
  • First Online:
Encyclopedia of Astrobiology
  • 75 Accesses

Synonyms

Archaean biosignatures

Definition

The Archaean is the period of geological time between 3.8 and 2.5 billion years ago when life is thought to have emerged on Earth. Traces of Archaean life are preserved in rare, fragmentary, and often highly altered rock sequences. Morphological evidence for Archaean life is provided by microfossils, stromatolites, and microbially induced sedimentary structures. Chemical evidence for life is recorded by stable isotope ratios of carbon and sulfur in particular. These various biosignatures provide insights into the nature of early Archaean ecosystems and much remains to be learned about the predominant microbial metabolisms at this time and their distribution. Recognizing and distinguishing abiotic mimics from bona fide microbial also remains an important challenge. The effort to refine our understanding of microbial biosignatures in the Archaean rock record is essential to designing strategies for seeking life elsewhere in our universe and for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,711.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 2,139.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Allwood AC, Rosing MT, Flannery DT, Hurowitz JA, Heirwegh CM (2018) Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563(7730):241–244

    Article  ADS  Google Scholar 

  • Banerjee NR, Simonetti A, Furnes H, Staudigel H, Muehlenbachs K, Heaman L, Van Kranendonk MJ (2007) Direct dating of Archean microbial ichnofossils. Geology 35:487–490

    Article  ADS  Google Scholar 

  • Bengtson S, Rasmussen B, Ivarsson M, Muhling J, Broman C, Marone F et al (2017) Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat Ecol Evol 1(6):1–6

    Article  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  ADS  Google Scholar 

  • Brasier MD, Green OR, Lindsay JF, McLoughlin N, Jephcoat AP, Kleppe AK, Steele A, Stoakes CP (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ~3.5 Ga Apex chert, Chinaman Creek, Western Australia. Prec Res 140:55–102

    Article  Google Scholar 

  • Brasier MD, McLoughlin N, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans R Soc B 361:887–902

    Article  Google Scholar 

  • Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8(1):1–9

    Google Scholar 

  • Fedo CM, Whitehouse MJ (2002) metasomatic origin of quartz-pyroxene rock, Akilia, greenland, and its implications for Earth’s earliest life. Science 296:1448–1452

    Article  ADS  Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304(5670):578–581

    Article  ADS  Google Scholar 

  • García-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Van Kranendonk MJ, Welham NJ (2003) Self-assembled silica carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  ADS  Google Scholar 

  • Grassineau NV, Nisbet EG, Bickle MJ, Fowler CMR, Lowry D, Mattey DP, Abell P, Martin A (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year old rock of the Belingwe Belt, Zimbabwe. Proc Royal Soc Lond B 268:113–119

    Article  Google Scholar 

  • Grosch EG, McLoughlin N (2013) Paleoarchean sulfur cycle and biogeochemical surface conditions on the early Earth, Barberton, South Africa. Earth Planet Sci Lett 377:142–154

    Article  ADS  Google Scholar 

  • Grosch EG, McLoughlin N (2014) Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc Natl Acad Sci 111(23):8380–8385

    Article  ADS  Google Scholar 

  • Grosch EG, Muñoz M, Mathon O, McLoughlin N (2017) Earliest microbial trace fossils in Archaean pillow lavas under scrutiny: new micro-X-ray absorption near-edge spectroscopy, metamorphic and morphological constraints. Geological Soc London Special Pub 448(1):57–70

    Article  ADS  Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383(6599):423–425

    Article  ADS  Google Scholar 

  • Heubeck C (2009) An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology 37(10):931–934

    Article  ADS  Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geolog Soc Am Bullet 111:1256–1126

    Article  ADS  Google Scholar 

  • Javaux E (2019) Challenges in evidencing the earliest traces of life. Nature 572:451–459

    Article  ADS  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliclastic deposits. Nature 463:934–938

    Article  ADS  Google Scholar 

  • Lepot K (2020) Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Sci Rev 103296

    Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387

    Article  ADS  Google Scholar 

  • McLoughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes–implications for the early fossil record. Geobiology 6(2):95–105

    Article  Google Scholar 

  • McLoughlin N, Staudigel H, Furnes H, Eickmann B, Ivarsson M (2010) Mechanisms of microtunneling in rock substrates: distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8(4):245–255

    Article  Google Scholar 

  • McLoughlin N, Wacey D, Phunguphungu S, Saunders M, Grosch EG (2020) Deconstructing Earth’s oldest ichnofossil record from the Pilbara Craton, West Australia: Implications for seeking life in the Archean subseafloor. Geobiology 18(5):525–543

    Article  Google Scholar 

  • Mojzsis SJ, Arrenhius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for Life on Earth 3,800 Million Years Ago. Nature 384:55–59

    Article  ADS  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into Early Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34(4):253–256

    Article  ADS  Google Scholar 

  • Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537(7621):535–538

    Article  ADS  Google Scholar 

  • Philippot P, van Zuilen MA, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    Article  ADS  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,250-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  ADS  Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Prec Res 106:117–134

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3 Billion to 3.5 Billion-Year-Old) Microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  ADS  Google Scholar 

  • Schopf JW, Kitajima K, Spicuzza MJ, Kudryavtsev AB, Valley JW (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. PNAS 115(1):53–58

    Article  ADS  Google Scholar 

  • Sforna MC, Brunelli D, Pisapia C, Pasini V, Malferrari D, Ménez B (2018) Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust. Nat Commun 9(1):1–8

    Article  Google Scholar 

  • Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64(3–4):243–272

    Article  ADS  Google Scholar 

  • Sugitani K, Mimura K, Takeuchi M, Lepot K, Ito S, Javaux EJ (2015) Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13(6):507–521

    Article  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552

    Article  ADS  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519

    Article  ADS  Google Scholar 

  • van Zuilen MA, Chaussidon M, Rollion-Bard C, Marty B (2007) Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures. Geochimica et Cosmochimica Acta 71(3):655–669

    Article  ADS  Google Scholar 

  • Wacey D, McLoughlin N, Whitehouse MJ, Kilburn MR (2010) Two co-existing sulfur metabolisms in a ca. 3,400 Ma sandstone. Geology 38(12):1115–1118

    Article  ADS  Google Scholar 

  • Wacey D, Saunders M, Cliff J, Kilburn MR, Kong C, Barley ME, Brasier MD (2014) Geochemistry and nano-structure of a putative∼ 3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia. Prec Res 249:1–12

    Article  Google Scholar 

  • Wacey D, Saunders M, Kong C (2018) Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: Implications for the interpretation of Precambrian microfossils. Earth Planet Sci Lett 487:33–43

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola McLoughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McLoughlin, N. (2023). Archaean Traces of Life. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65093-6_101

Download citation

Publish with us

Policies and ethics

Navigation