Archean Traces of Life

  • Reference work entry
  • First Online:
Encyclopedia of Astrobiology
  • 85 Accesses

Synonyms

Archean biosignatures; Trace of life

Definition

The Archean is the period of geological time between 3.8 and 2.5 billion years ago when life is thought to have emerged on Earth. Traces of Archean life are preserved in rare, fragmentary, and often highly altered rock sequences. Morphological evidence for Archean life is provided by microfossils, microborings, stromatolites, and wrinkle mats. Chemical evidence for life is recorded by stable isotope ratios of C and S especially. These different biosignatures are yet to provide a consistent and complete picture of early Archean ecosystems, and there is currently little scientific consensus about when and where life first emerged on Earth. Refining our understanding of microbial biosignatures in the Archean rock record is essential to designing strategies for seeking life elsewhere in our universe and for ratifying this evidence.

Overview

This entry first explains where to look for Archean traces of life, whatevidence...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,199.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 534.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of early archean stromatolites. Proc Natl Acad Sci 106:9548–9555

    ADS  Google Scholar 

  • Banerjee NR, Simonetti A, Furnes H, Staudigel H, Muehlenbachs K, Heaman L, Van Kranendonk MJ (2007) Direct dating of archean microbial ichnofossils. Geology 35:487–490

    ADS  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for earth’s oldest fossils. Nature 416:76–81

    ADS  Google Scholar 

  • Brasier MD, Green OR, Lindsay JF, McLoughlin N, Jephcoat AP, Kleppe AK, Steele A, Stoakes CP (2005) Critical testing of Earth’s oldest putative fossil assemblage from the 3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambrian Res 140:55–102

    ADS  Google Scholar 

  • Brasier MD, McLoughlin N, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B 361:887–902

    Google Scholar 

  • Brocks JJ, Summons RE (2003) Sedimentary hydrocarbons. Biomarkers for early life. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 8. Elsevier, Amsterdam, p 63

    Google Scholar 

  • Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335

    ADS  Google Scholar 

  • Canfield DE (2001) Biogeochemistry of sulphur isotopes. Rev Mineral Geochem 43:607–636

    Google Scholar 

  • Canfield DE, Raiswell R (1999) The evolution of the sulphur cycle. Am J Sci 299:697–723

    ADS  Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (2005) The sulphur cycle. In Aquatic geomicrobiology. Adv Mar Biol 48:313–381

    Google Scholar 

  • Dauphas N, van Zuilen M, Wadhwa M, Davis AM, Marty B, Janney PE (2004) Clues from Fe isotope variations on the origins of early Archean BIFs from Greenland. Science 306:2077–2080

    ADS  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756–758

    ADS  Google Scholar 

  • Furnes H, Banerjee NR, Staudigel H, Muehlenbachs K, McLoughlin N, de Wit M, Van Kranendonk M (2007) Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res 158:156–176

    ADS  Google Scholar 

  • Furnes H, McLoughlin N, Muehlenbachs K, Banerjee NR, Staudigel H, Dilek Y, de Wit M, Van Kranendonk M, Schiffmann P (2008) Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time – a review. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities, and evolution of life, Springer book series. Springer, Heidelberg, pp 1–68

    Google Scholar 

  • García-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Van Kranendonk MJ, Welham NJ (2003) Self-assembled silica carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    ADS  Google Scholar 

  • Godfrey LV, Falkowski PG (2009) The cycling and redox state of nitrogen in the Archean Ocean. Nat Geosci 2:725–729

    ADS  Google Scholar 

  • Grassineau NV, Nisbet EG, Bickle MJ, Fowler CMR, Lowry D, Mattey DP, Abell P, Martin A (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year old rock of the Belingwe Belt, Zimbabwe. Proc R Soc Lond B 268:113–119

    Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in the Warrawoona Group, Western Australia. Bull Geol Soc Am 111:1256–1262

    Google Scholar 

  • Hren MT, Tice MM, Chamberlain CP (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462:205–208

    ADS  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliclastic deposits. Nature 463:934–938

    ADS  Google Scholar 

  • McLoughlin N, Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H (2009) Ichnotaxonomy of microbial trace fossils in volcanic glass. J Geol Soc Lond 166:159–170

    Google Scholar 

  • Mojzsis SJ, Arrenhius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on earth 3,800 million years ago. Nature 384:55–59

    ADS  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into early Archean life: microbial mats in Earth’s oldest siliclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256

    ADS  Google Scholar 

  • Ohmoto H, Kakegawa T, Lowe DR (1993) 3.4-billion-year-old pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262:555–557

    ADS  Google Scholar 

  • Philippot P, van Zuilen MA, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    ADS  Google Scholar 

  • Pinti DL, Mineau R, Clement V (2009) Hydrothermal alteration and microfossil artefacts of the 3, 465-million-year-old Apex Chert. Nat Geosci 2:640–643

    ADS  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3, 250-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    ADS  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    ADS  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis. E P S L 217:237–244

    Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: evolution of a concept. Precambrian Res 106:117–134

    ADS  Google Scholar 

  • Schopf JW (2002) When did life begin? In: Schopf JW (ed) Life’s origin: beginnings of biological evolution. University of California Press, Berkeley, pp 158–180

    Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    ADS  Google Scholar 

  • Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature 410:77–81

    ADS  Google Scholar 

  • Shen Y, Farquhar J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391

    ADS  Google Scholar 

  • Sherwood Lollar B, Westagate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416:522–524

    ADS  Google Scholar 

  • Staudigel H, Furnes H, McLoughlin N, Banerjee NR, Connell LB, Templeton A (2008) 3.5 Billion years of glass bioalteration: volcanic rocks as a basis for microbial life? Earth Sci Rev 89:156–176

    ADS  Google Scholar 

  • Thorseth IH (2011) Basalt (glass, endoliths). In: Reitner T (ed) Encyclopedia of geobiology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3, 416-Myr-old ocean. Nature 431:549–552

    ADS  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archean era. Nature 440:516–519

    ADS  Google Scholar 

  • Ueno Y, Ono S, Rumble D, Maruyama S (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691

    ADS  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Bennett VC (eds) (2007) Earth’s oldest rocks: developments in Precambrian geology, vol 15. Elsevier, London

    Google Scholar 

  • van Zuilen MA, Lepland A, Arhenius G (2002) Reassessing the evidence for the earliest traces of life. Nature 418:627–630

    ADS  Google Scholar 

  • Wacey D (2009) Early life on earth: a practical guide, vol 31, Topics in geobiology. Springer, Berlin, 274 p

    Google Scholar 

  • Wacey D (2010) Stromatolites in the c.3400 Ma Strelley Pool formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiology 10:381–395

    ADS  Google Scholar 

  • Wacey D, McLoughlin N, Whitehouse MJ, Kilburn MR (2010) Two co-existing sulfur metabolisms in a ca. 3,400 Ma sandstone. Geology 38:1115–1118

    ADS  Google Scholar 

  • Walsh MM, Lowe DL (1999) Modes of accumulation of carbonaceous matter in the early Archean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In: Lowe DR, Byerley GR (eds) Geologic evolution of the Barberton Greenstone Belt. South Africa. Geological Society of America, Boulder, pp 167–188, Geological Society of America special paper 329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola McLoughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McLoughlin, N. (2015). Archean Traces of Life. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44185-5_101

Download citation

Publish with us

Policies and ethics

Navigation