Supported Lipid Bilayers

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Synonyms

Lipid bilayer

Introduction

Supported lipid bilayers are used in many biophysical investigations as well as in analytical devices. They are mechanically stable with defined properties, and they can be interfaced with means to monitor electric, mechanical, or diffusion-related properties (“Lipid Lateral Diffusion”). Furthermore, supported lipid bilayers have been designed to exhibit well-defined shapes and curvature, which can be planar, spherical, or cylindrical depending on the nature of the support. They have been prepared as single bilayer deposits (Brian and McConnell 1984) or as stacks of lipid bilayers where only the outermost membranes are in contact with the solid support (Fig. 1) (Powers and Clark 1975). In the latter case, the mechanical alignment of the membrane in direct contact with the mechanical support is transmitted throughout the stack through the interaction between subsequent bilayers (Fig. 1e) (Aisenbrey et al. 2010). Supported lipid membranes come in many...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aisenbrey C, Bertani P, Bechinger B (2010) Solid-state NMR investigations of membrane-associated antimicrobial peptides. In: Guiliani A, Rinaldi AC (eds) Antimicrobial peptides. Humana Press/Springer, New York, pp 209–343

    Chapter  Google Scholar 

  • Alessandrini A, Facci P (2014) Phase transitions in supported lipid bilayers studied by AFM. Soft Matter 10:7145–7164

    Article  CAS  Google Scholar 

  • Arkin IT (2006) Isotope-edited IR spectroscopy for the study of membrane proteins. Curr Opin Chem Biol 10:394–401

    Article  CAS  Google Scholar 

  • Auge S, Mazarguil H, Tropis M, Milon A (1997) Preparation of oriented lipid bilayer on ultrathin polymers for solid-state nmr analyses of peptide-membrane interactions. J Magn Reson 124:455–458

    Article  Google Scholar 

  • Bally M, Bailey K, Sugihara K, Grieshaber D, Voros J, Stadler B (2010) Liposome and lipid bilayer arrays towards biosensing applications. Small 6:2481–2497

    Article  CAS  Google Scholar 

  • Bechinger B, Resende JM, Aisenbrey C (2011) The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 153:115–125

    Article  CAS  Google Scholar 

  • Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A 81:6159–6163

    Article  CAS  Google Scholar 

  • Butler KS, Durfee PN, Theron C, Ashley CE, Carnes EC, Brinker CJ (2016) Protocells: modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 12:2173–2185

    Article  CAS  Google Scholar 

  • Clifton LA, Holt SA, Hughes AV, Daulton EL, Arunmanee W, Heinrich F, Khalid S, Jefferies D, Charlton TR, Webster JRP, Kinane CJ, Lakey JH (2015) An accurate in vitro model of the E. coli envelope. Angew Chem 127:12120–12123

    Article  Google Scholar 

  • Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  CAS  Google Scholar 

  • del Rio Martinez JM, Zaitseva E, Petersen S, Baaken G, Behrends JC (2015) Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. Small 11:119–125

    Article  Google Scholar 

  • Hardy GJ, Nayak R, Zauscher S (2013) Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr Opin Colloid Interface Sci 18:448–458

    Article  CAS  Google Scholar 

  • Hartman KL, Kim S, Kim K, Nam JM (2015) Supported lipid bilayers as dynamic platforms for tethered particles. Nanoscale 7:66–76

    Article  CAS  Google Scholar 

  • Ivanov D, Dubreuil N, Raussens V, Ruysschaert JM, Goormaghtigh E (2004) Evaluation of the ordering of membranes in multilayer stacks built on an ATR-FTIR germanium crystal with atomic force microscopy: the case of the H(+), K(+)-ATPase-containing gastric tubulovesicle membranes. Biophys J 87:1307–1315

    Article  CAS  Google Scholar 

  • Janshoff A, Steinem C (2015) Mechanics of lipid bilayers: what do we learn from pore-spanning membranes? Biochim Biophys Acta 1853:2977–2983

    Article  CAS  Google Scholar 

  • Kam LC (2009) Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers. J Struct Biol 168:3–10

    Article  CAS  Google Scholar 

  • Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta 1788:64–71

    Article  CAS  Google Scholar 

  • Kiessling V, Yang ST, Tamm LK (2015) Supported lipid bilayers as models for studying membrane domains. Curr Top Membr 75:1–23

    Article  Google Scholar 

  • Kocer A, Tauk L, Dejardin P (2012) Nanopore sensors: from hybrid to abiotic systems. Biosens Bioelectron 38:1–10

    Article  CAS  Google Scholar 

  • Li E, Merzlyakov M, Lin J, Searson P, Hristova K (2009) Utility of surface-supported bilayers in studies of transmembrane helix dimerization. J Struct Biol 168:53–60

    Article  CAS  Google Scholar 

  • Lind TK, Cardenas M (2016) Understanding the formation of supported lipid bilayers via vesicle fusion-A case that exemplifies the need for the complementary method approach (Review). Biointerphases 11:020801

    Article  Google Scholar 

  • Loose M, Schwille P (2009) Biomimetic membrane systems to study cellular organization. J Struct Biol 168:143–151

    Article  CAS  Google Scholar 

  • Martin I, Goormaghtigh E, Ruysschaert JM (2003) Attenuated total reflection IR spectroscopy as a tool to investigate the orientation and tertiary structure changes in fusion proteins. Biochim Biophys Acta 1614:97–103

    Article  CAS  Google Scholar 

  • Naumann RL, Knoll W (2008) Protein tethered lipid bilayer: an alternative mimic of the biological membrane. Biointerphases 3:FA101

    Article  Google Scholar 

  • Oliver AE, Parikh AN (2010) Templating membrane assembly, structure, and dynamics using engineered interfaces. Biochim Biophys Acta 1798:839–850

    Article  CAS  Google Scholar 

  • Pace HP, Hannestad JK, Armonious A, Adamo M, Agnarsson B, Gunnarsson A, Micciulla S, Sjövall P, Gerelli Y, Höök F (2018) Structure and composition of native membrane derived polymer-supported lipid bilayers. Anal Chem 90:13065–13072

    Article  CAS  Google Scholar 

  • Perez JB, Segura JM, Abankwa D, Piguet J, Martinez KL, Vogel H (2006) Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol 363:918–930

    Article  CAS  Google Scholar 

  • Picas L, Milhiet PE, Hernandez-Borrell J (2012) Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 165:845–860

    Article  CAS  Google Scholar 

  • Powers L, Clark NA (1975) Preparation of large monodomain phospholipid bilayer smectic liquid crystals. Proc Natl Acad Sci U S A 72:840–843

    Article  CAS  Google Scholar 

  • Reimhult E, Kumar K (2008) Membrane biosensor platforms using nano- and microporous supports. Trends Biotechnol 26:82–89

    Article  CAS  Google Scholar 

  • Richter RP, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505

    Article  CAS  Google Scholar 

  • Salnikov E, Rosay M, Pawsey S, Ouari O, Tordo P, Bechinger B (2010) Solid-state NMR spectroscopy of oriented membrane polypeptides at 100 K with signal enhancement by dynamic nuclear polarization. J Am Chem Soc 132:5940–5941

    Article  CAS  Google Scholar 

  • Salnikov E, Sarrouj H, Reiter C, Aisenbrey C, Purea A, Aussenac F, Ouari O, Tordo P, Fedoenko I, Engelke F, Bechinger B (2015) Solid-state NMR/dynamic nuclear polarization of planar supported lipid bilayers. J Phys Chem B 119:14574–14583

    Article  CAS  Google Scholar 

  • Salnikov ES, Aisenbrey C, Aussenac F, Ouari O, Sarrouj H, Reiter C, Tordo P, Engelke F, Bechinger B (2016) Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by dynamic nuclear polarization/solid-state NMR spectroscopy. Sci Rep 6:20895

    Article  CAS  Google Scholar 

  • Schmidt C, Mayer M, Vogel H (2000) A chip-based biosensor for the functional analysis of single ion channels. Angew Chem Int Ed Engl 39:3137–3140

    Article  CAS  Google Scholar 

  • Sezgin E, Schwille P (2012) Model membrane platforms to study protein-membrane interactions. Mol Membr Biol 29:144–154

    Article  CAS  Google Scholar 

  • Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663

    Article  CAS  Google Scholar 

  • Tayebi L, Ma Y, Vashaee D, Chen G, Sinha SK, Parikh AN (2012) Long-range inter-layer alignment of intra-layer domains in stacked lipid bilayers. Nat Mater 11:1074–1080

    Article  CAS  Google Scholar 

  • van Weerd J, Karperien M, Jonkheijm P (2015) Supported lipid bilayers for the generation of dynamic cell-material interfaces. Adv Healthc Mater 4:2743–2779

    Article  Google Scholar 

  • Yu CH, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48:955–963

    Article  Google Scholar 

  • Zagnoni M (2012) Miniaturised technologies for the development of artificial lipid bilayer systems. Lab Chip 12:1026–1039

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Bechinger .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bechinger, B. (2019). Supported Lipid Bilayers. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_566-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_566-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation