Volumetric Properties of Biomolecular Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Synonyms

Compressibility; Expansibility; Hydration; Lipids; Molecular interactions; Nucleic acids; Pressure; Proteins; Thermodynamics; Volume

Definition

The partial molar volume of a solute is the pressure derivative of its chemical potential, while the partial molar expansibility and compressibility represent, respectively, the temperature and pressure derivatives of the partial molar volume. These volumetric parameters cumulatively reflect and, thus, can be used to characterize the plethora of intra- and intermolecular interactions stabilizing biomolecular systems and driving their recognition events. Hydration is an elusive component of such interactions that, nevertheless, frequently contributes the lion’s share to the energetics of biomolecular stability and recognition.

Thermodynamic Considerations

Observables.Pressure and temperature are both fundamental thermodynamic variables. However, the use of pressure in biophysical studies is more limited compared to that of temperature...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835

    Google Scholar 

  • Anderson CF, Record MT (1995) Salt nucleic acid interactions. Annu Rev Phys Chem 46:657–700

    Google Scholar 

  • Baden N, Kajimoto O, Hara K (2002) High-pressure studies on aggregation number of surfactant micelles using the fluorescence quenching method. J Phys Chem B 106:8621–8624

    Google Scholar 

  • Blandamer MJ, Davis MI, Douheret G, Reis JCR (2001) Apparent molar isentropic compressions and expansions of solutions. Chem Soc Rev 30:8–15

    Google Scholar 

  • Brun TS, Hoiland H, Vikingstad E (1978) Partial molal volumes and isentropic partial molal compressibilities of surface active agents in aqueous solution. J Colloid Interface Sci 63:89–96

    Google Scholar 

  • Buckin VA (1988) Hydration of nucleic bases in dilute aqueous solutions. Apparent molar adiabatic and isothermal compressibilities, apparent molar volumes and their temperature slopes at 25 °C. Biophys Chem 29:283–292

    Google Scholar 

  • Buckin VA, Kankiya BI, Kazaryan RL (1989) Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys Chem 34:211–223

    Google Scholar 

  • Cameron DL, Jakus J, Pauleta SR, Pettigrew GW, Cooper A (2010) Pressure perturbation calorimetry and the thermodynamics of noncovalent interactions in water: comparison of protein-protein, protein-ligand, and cyclodextrin-adamantane complexes. J Phys Chem B 114:16228–16235

    Google Scholar 

  • Chalikian TV (1998) Ultrasonic and densimetric characterizations of the hydration properties of polar groups in monosaccharides. J Phys Chem B 102:6921–6926

    Google Scholar 

  • Chalikian TV (2003) Volumetric properties of proteins. Annu Rev Biophys Biomol Struct 32:207–235

    Google Scholar 

  • Chalikian TV (2008) On the molecular origins of volumetric data. J Phys Chem B 112:911–917

    Google Scholar 

  • Chalikian TV (2011) Volumetric measurements in binary solvents: Theory to experiment. Biophys Chem 156:3–12

    Google Scholar 

  • Chalikian TV (2014) Partial molar volumes of proteins in solution. In: Emmerich W, Trevor L (eds) Volumetric properties: liquids, solutions, and vapour. Royal Society of Chemistry, Croydon, pp 542–574

    Google Scholar 

  • Chalikian TV, Breslauer KJ (1996a) On volume changes accompanying conformational transitions of biopolymers. Biopolymers 39:619–626

    Google Scholar 

  • Chalikian TV, Breslauer KJ (1996b) Compressibility as a means to detect and characterize globular protein states. Proc Natl Acad Sci U S A 93:1012–1014

    Google Scholar 

  • Chalikian TV, Breslauer KJ (1998) Volumetric properties of nucleic acids. Biopolymers 48:264–280

    Google Scholar 

  • Chalikian TV, Filfil R (2003) How large are the volume changes accompanying protein transitions and binding? Biophys Chem 104(2):489–499

    Google Scholar 

  • Chalikian TV, Macgregor RB (2007) Nucleic acid hydration: a volumetric perspective. Phys Life Rev 4:91–115

    Google Scholar 

  • Chalikian TV, Macgregor RB Jr (2009) Origins of pressure-induced protein transitions J Mol Biol 394(5):834–842

    Google Scholar 

  • Chalikian TV, Volker J (2008) Hydration of nucleic acids. In: Begley TP (ed) Wiley encyclopedia of chemical biology. Wiley, Hoboken.

    Google Scholar 

  • Chalikian TV, Sarvazyan AP, Breslauer KJ (1993) Partial molar volumes, expansibilities, and compressibilities of α,ω-aminocarboxylic acids in aqueous solutions between 18 and 55 °C. J Phys Chem 97:13017–13026

    Google Scholar 

  • Chalikian TV, Sarvazyan AP, Plum GE, Breslauer KJ (1994a) Influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25 °C. Biochemistry 33:2394–2401

    Google Scholar 

  • Chalikian TV, Plum GE, Sarvazyan AP, Breslauer KJ (1994b) Influence of drug binding on DNA hydration: acoustic and densimetric characterizations of netropsin binding to the poly(dAdT)poly(dAdT) and poly(dA)poly(dT) duplexes and the poly(dT)poly(dA)poly(dT) triplex at 25 °C. Biochemistry 33:8629–8640

    Google Scholar 

  • Chalikian TV, Totrov M, Abagyan R, Breslauer KJ (1996) The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J Mol Biol 260:588–603

    Google Scholar 

  • Chalikian TV, Volker J, Srinivasan AR, Olson WK, Breslauer KJ (1999a) The hydration of nucleic acid duplexes as assessed by a combination of volumetric and structural techniques. Biopolymers 50:459–471

    Google Scholar 

  • Chalikian TV, Volker J, Plum GE, Breslauer KJ (1999b) A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A 96:7853–7858

    Google Scholar 

  • Chen CR, Makhatadze GI (2017a) Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nat Commun 8:14561

    Google Scholar 

  • Chen CR, Makhatadze GI (2017b) Molecular determinants of temperature dependence of protein volume change upon unfolding. J Phys Chem B 121:8300–8310

    Google Scholar 

  • Chong PL, Cossins AR (1984) Interacting effects of temperature, pressure and cholesterol content upon the molecular order of dioleoylphosphatidylcholine vesicles. Biochim Biophys Acta 772:197–201

    Google Scholar 

  • Connaughton LM, Hershey JP, Millero FJ (1986) PVT properties of concentrated aqueous electrolytes. 5. Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 °C to 100 °C. J Solut Chem 15:989–1002

    Google Scholar 

  • Conway BE (1978) Evaluation and use of properties of individual ions in solution. J Solut Chem 7:721–770

    Google Scholar 

  • Cooper A, Cameron D, Jakus J, Pettigrew GW (2007) Pressure perturbation calorimetry, heat capacity and the role of water in protein stability and interactions. Biochem Soc Trans 35:1547–1550

    Google Scholar 

  • Dellarole M, Royer CA (2014) High-pressure fluorescence applications. Methods Mol Biol 1076:53–74

    Google Scholar 

  • Desnoyer JE, Verrall RE, Conway BE (1965) Electrostriction in aqueous solutions of electrolytes. J Chem Phys 43:243–250

    Google Scholar 

  • Dubins DN, Filfil R, Macgregor RB, Chalikian TV (2000) Role of water in protein-ligand interactions: Volumetric characterization of the binding of 2′-CMP and 3′-CMP to ribonuclease A. J Phys Chem B 104:390–401

    Google Scholar 

  • Dubins DN, Lee A, Macgregor RB Jr, Chalikian TV (2001) On the stability of double stranded nucleic acids. J Am Chem Soc 123:9254–9259

    Google Scholar 

  • Eggers F (1967) A resonator method for determination of sound velocity and attenuation with small quantities of liquid. Acustica 19:323–329

    Google Scholar 

  • Eggers F, Funck T (1973) Ultrasonic measurements with milliliter liquid samples in 0.5–100 MHz range. Rev Sci Instrum 44:969–977

    Google Scholar 

  • Fan HY, Shek YL, Amiri A, Dubins DN, Heerklotz H, Macgregor RB, Chalikian TV (2011a) Volumetric characterization of sodium-induced G-quadruplex formation. J Am Chem Soc 133:4518–4526

    Google Scholar 

  • Fan HY, Nazari M, Chowdhury S, Heerklotz H (2011b) Volume and expansivity changes of micelle formation measured by pressure perturbation calorimetry. Langmuir 27:1693–1699

    Google Scholar 

  • Filfil R, Chalikian TV (2003a) Volumetric and spectroscopic characterizations of glucose-hexokinase association. FEBS Lett 554:351–356

    Google Scholar 

  • Filfil R, Chalikian TV (2003b) The thermodynamics of protein-protein recognition as characterized by a combination of volumetric and calorimetric techniques: the binding of turkey ovomucoid third domain to α-chymotrypsin. J Mol Biol 326:1271–1288

    Google Scholar 

  • Filfil R, Ratavosi A, Chalikian TV (2004) Binding of bovine pancreatic trypsin inhibitor to trypsinogen: spectroscopic and volumetric studies. Biochemistry 43:1315–1322

    Google Scholar 

  • Gekko K, Hasegawa Y (1986) Compressibility-structure relationship of globular proteins. Biochemistry 25:6563–6571

    Google Scholar 

  • Greenspan M, Tschiegg CE (1957) Speed of sound in water by a direct method. J Res Natl Bur Stand 59:249–254

    Google Scholar 

  • Hackel M, Hinz HJ, Hedwig GR (2000) The partial molar volumes of some tetra- and pentapeptides in aqueous solution: a test of amino acid side-chain group additivity for unfolded proteins. Phys Chem Chem Phys 2:4843–4849

    Google Scholar 

  • Halstenberg S, Heimburg T, Hianik T, Kaatze U, Krivanek R (1998) Cholesterol-induced variations in the volume and enthalpy fluctuations of lipid bilayers. Biophys J 75:264–271

    Google Scholar 

  • Han F, Chalikian TV (2003) Hydration changes accompanying nucleic acid intercalation reactions:volumetric characterizations. J Am Chem Soc 125:7219–7229

    Google Scholar 

  • Hara K, Suzuki H, Takisawa NJ (1989) High pressure studies of a fluorescence probe for the critical micelle concentration in dodium dodecyl sulfate. Phys Chem 93:3710–3713

    Google Scholar 

  • Hedwig GR (2006) Isentropic and isothermal compressibilities of the backbone glycyl group of proteins in aqueous solution. Biophys Chem 124:35–42

    Google Scholar 

  • Hedwig GR, Hogseth E, Hoiland H (2013) Volumetric properties of the nucleosides adenosine, cytidine, and uridine in aqueous solution at T=298.15 K and p = (10 to 120) MPa. J Chem Thermodyn 61:117–125

    Google Scholar 

  • Hoiland H, Holvik H (1978) Partial molal volumes and compressibilities of carbohydrates in water. J Solut Chem 7:587–596

    Google Scholar 

  • Hoiland H, Skauge A, Stokkeland I (1984) Changes in partial molar volumes and isentropic partial molar compressibilities of stacking of some nucleobases and nucleosides in water at 298.15 K. J Phys Chem 88:6350–6353

    Google Scholar 

  • Jacobson DR, Saleh OA (2017) Counting the ions surrounding nucleic acids. Nucleic Acids Res 45:1596–1605

    Google Scholar 

  • Kaneshina S, Tanaka M, Tomida T, Matuura R (1974) Micelle formation of sodium alkylsulfate under high pressures. J Colloid Interface Sci 48:450–460

    Google Scholar 

  • Kato M, Ozawa S, Hayashi R (1997) Effects of high pressure and temperature on micelle formation of sodium deoxycholate and sodium dodecylsulfate. Lipids 32:1229–1230

    Google Scholar 

  • Kharakoz DP (1989) Volumetric properties of proteins and their analogs in diluted water solutions. 1. Partial volumes of amino acids at 15-55 °C. Biophys Chem 34:115–125

    Google Scholar 

  • Kharakoz DP (1991) Volumetric Properties of Proteins and Their Analogs in Diluted Water Solutions .2. Partial Adiabatic Compressibilities of Amino-Acids at 15-70 °C. J Phys Chem 95:5634–5642

    Google Scholar 

  • Kharakoz DP (1992) Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water. J Solut Chem 21:569–595

    Google Scholar 

  • Kharakoz DP, Shlyapnikova EA (2000) Thermodynamics and kinetics of the early steps of solid-state nucleation in the fluid lipid bilayer. J Phys Chem B 104:10368–10378

    Google Scholar 

  • Kratky O, Leopold H, Stabinger H (1973) The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol 27:98–110

    Google Scholar 

  • Kudryashov E, Kapustina T, Morrissey S, Buckin V, Dawson K (1998) The compressibility of alkyltrimethylammonium bromide micelles. J Colloid Interface Sci 203:59–68

    Google Scholar 

  • Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    Google Scholar 

  • Lee A, Chalikian TV (2001) Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys Chem 92:209–227

    Google Scholar 

  • Lee S, Tikhomirova A, Shalvardjian N, Chalikian TV (2008) Partial molar volumes and adiabatic compressibilities of unfolded protein states. Biophys Chem 134:185–199

    Google Scholar 

  • Lerch MT, Horwitz J, McCoy J, Hubbell WL (2013) Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proc Natl Acad Sci U S A 110:E4714–E4722

    Google Scholar 

  • Lesemann M, Thirumoorthy K, Kim YJ, Jonas J, Paulaitis ME (1998) Pressure dependence of the critical micelle concentration of a nonionic surfactant in water studied by H1 NMR. Langmuir 14:5339–5341

    Google Scholar 

  • Li YY, Dubins DN, Le D, Leung K, Macgregor RB Jr (2017) He role of loops and cation on the volume of unfolding of G-quadruplexes related to HTel. Biophys Chem 231:55–63

    Google Scholar 

  • Lin LN, Brandts JF, Brandts JM, Plotnikov V (2002) Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal Biochem 302:144–160

    Google Scholar 

  • Luong TQ, Kapoor S, Winter R (2015) Pressure-a gateway to fundamental insights into protein solvation, dynamics, and function. ChemPhysChem 16:3555–3571

    Google Scholar 

  • Macgregor RB Jr (1998) Effect of hydrostatic pressure on nucleic acids. Biopolymers 48:253–263

    Google Scholar 

  • Manning GS (1978) Effect of hydrostatic pressure on nucleic acids. Q Rev Biophys 11:179–246

    Google Scholar 

  • Marcus Y (2011) Electrostriction in electrolyte solutions. Chem Rev 111:2761–2783

    Google Scholar 

  • Millero FJ, Ward GK, Chetirkin PV (1977) Relative sound velocities of sea salts at 25 °C. J Acoust Soc Am 61:1492–1498

    Google Scholar 

  • Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R (2006) Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures - A FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. Biochim Biophys Acta 1758:248–258

    Google Scholar 

  • Onori G (1988) Ionic hydration in sodium chloride solutions. J Chem Phys 89:510–516

    Google Scholar 

  • Pandharipande PP, Makhatadze GI (2015) Thermal expansivities of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry. Methods 76:61–66

    Google Scholar 

  • Rayan G, Macgregor RB (2005) Comparison of the heat- and pressure-induced helix-coil transition of two DNA copolymers. J Phys Chem B 109:15558–15565

    Google Scholar 

  • Rayan G, Tsamaloukas AD, Macgregor RB, Heerklotz HH (2009) Helix-coil transition of DNA monitored by pressure perturbation calorimetry. J Phys Chem B 113:1738–1742

    Google Scholar 

  • Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, Schlessman JL, Garcia AE, Garcia-Moreno B, Royer CA (2012) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci U S A 109:6945–6950

    Google Scholar 

  • Royer CA (2002) Revisiting volume changes in pressure-induced protein unfolding. Biochim Biophys Acta 1595:201–209

    Google Scholar 

  • Sarvazyan AP (1982) Development of methods of precise ultrasonic measurements in small volumes of liquids. Ultrasonics 20:151–154

    Google Scholar 

  • Sarvazyan AP (1991) Ultrasonic velocimetry of biological compounds. Annu Rev Biophys Biophys Chem 20:321–342

    Google Scholar 

  • Sarvazyan AP, Hemmes P (1979) Ultrasonic investigation of solute-solvent and solute-solute interactions in aqueous solutions of bases, nucleosides, and nucleotides. 1. Dependence of solute-solvent interactions on the chemical structure of bases, nucleosides, and nucleotides. Biopolymers 18:3015–3024

    Google Scholar 

  • Sarvazyan AP, Kharakoz DP, Hemmes P (1979) Relaxational contributions to protein compressibility from ultrasonic data. J Phys Chem 83:1796–1799

    Google Scholar 

  • Sarvazyan AP, Buckin VA, Hemmes P (1980) Ultrasonic investigation of the pH-dependent solute solvent interactions in aqueous solutions of amino acids and proteins. J Phys Chem 84:692–696

    Google Scholar 

  • Schweiker KL, Makhatadze GI (2009) Use of pressure perturbation calorimetry to characterize the volumetric properties of proteins. Methods Enzymol 466:527–547

    Google Scholar 

  • Shek YL, Noudeh GD, Nazari M, Heerklotz H, Abu-Ghazalah RM, Dubins DN, Chalikian TV (2014) Folding thermodynamics of the hybrid-1 type intramolecular human telomeric G-quadruplex. Biopolymers 101:216–227

    Google Scholar 

  • Shi XS, Macgregor RB (2006) Temperature dependence of the volumetric parameters of drug binding to poly[d(A-T)]poly[d(A-T)] and poly(dA)poly(dT). Biophys J 90:1729–1738

    Google Scholar 

  • Shi X, Macgregor RB Jr (2007) Volume and hydration changes of DNA-ligand interactions. Biophys Chem 125:471–482

    Google Scholar 

  • Son I, Shek YL, Dubins DN, Chalikian TV (2012) Volumetric characterization of tri-N-acetylglucosamine binding to lysozyme. Biochemistry 51:5784–5790

    Google Scholar 

  • Son I, Selvaratnam R, Dubins DN, Melacini G, Chalikian TV (2013) Ultrasonic and densimetric characterization of the association of cyclic AMP with the cAMP-binding domain of the exchange protein EPAC1. J Phys Chem B 117:10779–10784

    Google Scholar 

  • Son I, Shek YL, Tikhomirova A, Baltasar EH, Chalikian TV (2014a) Interactions of urea with native and unfolded proteins: a volumetric study. J Phys Chem B 118:13554–13563

    Google Scholar 

  • Son I, Shek YL, Dubins DN, Chalikian TV (2014b) Hydration changes accompanying helix-to-coil DNA transitions. J Am Chem Soc 136:4040–4047

    Google Scholar 

  • Suladze S, Ismail S, Winter R (2014) Thermodynamic, dynamic and solvational properties of PDEδ binding to farnesylated cystein: a model study for uncovering the molecular mechanism of PDEδ interaction with prenylated proteins. J Phys Chem B 118:966–975

    Google Scholar 

  • Suladze S, Kahse M, Erwin N, Tomazic D, Winter R (2015) Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)--the effects of hydration, cosolvents and crowding. Methods 76:67–77

    Google Scholar 

  • Takahashi S, Sugimoto N (2017) Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure. Biophys Chem 231:146–154

    Google Scholar 

  • Tanaka M, Kaneshina S, Tomida T, Noda K, Aoki K (1973) Effect of pressure on solubilities of ionic surfactants in water. J Colloid Interface Sci 44:525–531

    Google Scholar 

  • Tanaka M, Kaneshin S, Kaoru SN, Okajima T, Tomida T (1974) J Colloid Interface Sci 46:132–138

    Google Scholar 

  • Taulier N, Chalikian TV (2002) Compressibility of protein transitions. Biochim Biophys Acta 1595:48–70

    Google Scholar 

  • Tikhomirova A, Chalikian TV (2004) Probing hydration of monovalent cations condensed around polymeric nucleic acids. J Mol Biol 341:551–563

    Google Scholar 

  • Toleikis Z, Sirotkin VA, Skvarnavicius G, Smirnoviene J, Roumestand C, Matulis D, Petrauskas V (2016) Volume of Hsp90 protein-ligand binding determined by fluorescent pressure shift assay,densitometry, and NMR. J Phys Chem B 120:9903–9912

    Google Scholar 

  • Winter R (2001) Effects of hydrostatic pressure on lipid and surfactant phases. Curr Opin Colloid Interface Sci 6:303–312

    Google Scholar 

  • Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    Google Scholar 

  • Wu JQ, Macgregor RB Jr (1993) Pressure dependence of the melting temperature of dA.dT polymers. Biochemistry 32:12531–12537

    Google Scholar 

  • Zhai Y, Okoro L, Cooper A, Winter R (2011) Applications of pressure perturbation calorimetry in biophysical studies. Biophys Chem 156:13–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigran V. Chalikian .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies’ Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chalikian, T.V., Macgregor, R.B. (2018). Volumetric Properties of Biomolecular Systems. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_10071-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_10071-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation