Microbial Exopolysaccharides

  • Reference work entry
The Prokaryotes
  • 6375 Accesses

Abstract

Microbial polysaccharides are produced in two forms, capsular polysaccharide (CPS) and exopolysaccharide (EPS). EPSs of microbial origin are ubiquitous in nature, have unique properties, and can be isolated from the bacteria in fresh water, marine environment, extreme conditions, and soil ecosystem. Exopolysaccharides are comprised of repeated units of sugar moieties, attached to a carrier lipid, and can be associated with proteins, lipids, organic and inorganic compounds, metal ions, and DNA. Specific functions and precise role of EPSs depend on structural units and ecological niches of the host microorganisms. EPSs produced by bacteria have great potential, and physicochemical characteristics of EPS decide its possible commercial application ranging from pharmaceutical to food-processing, extended to detoxification, bioremediation, paints, biotechnology, and petrochemicals. Exploitation of microbial exopolysaccharides is relatively unexplored and research interest is constantly increasing toward isolation, characterization, and applications of novel exopolysaccharides as renewable resources. Downstream processing and genetic engineering for enhanced biosynthesis of EPS require further emphasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson S, Dalhammar G, Rajarao GK (2011) Influence of microbial interactions and EPS/polysaccharide composition on nutrient removal activity in biofilms formed by strains found in wastewater treatment systems. Microbiol Res 166:449–457

    PubMed  CAS  Google Scholar 

  • Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 10:2381–2386

    Google Scholar 

  • Banik R, Kanari MB, Upadhyay SN (2000) Exopolysaccharide of the gellan family: prospects and potential. World J Microbiol Biotechnol 16:407–414

    CAS  Google Scholar 

  • Becker A, Kuester H, Niehaus K, Puhler A (1995) Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: Identification of the exsA gene encoding an ABC transporter protein and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol Gen Genet 249:487–497

    PubMed  CAS  Google Scholar 

  • Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour Technol 94:229–238

    PubMed  CAS  Google Scholar 

  • Bermúdez J, Rosales N, Loreto C, Briceño B, Morales E (2004) Exopolysaccharide, pigment and protein production by the marine microalga Chroomonas sp. in semicontinuous cultures. World J Microbiol Biotechnol 20:179–183

    Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food chain. Environ Int 32:191–198

    PubMed  CAS  Google Scholar 

  • Bramhachari PV, Dubey SK (2006) Isolation and characterization of exopolysaccharide produced by Vibrio harveyi strain VB23. Lett Appl Microbiol 43:571–577

    PubMed  CAS  Google Scholar 

  • Bramhachari PV, Kavi-kishor PB, Ramadevi R, Kumar R, Rao BR, Dubey SK (2007) Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J Microbiol Biotechnol 17:44–51

    PubMed  CAS  Google Scholar 

  • Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide–diphospho–sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939

    PubMed  CAS  Google Scholar 

  • Carlfors J, Edsman K, Peterson R, Jornving K (1998) Rheological evaluation of gelrite in situ for opthalmic use. Eur J Pharm Sci 6:113–119

    PubMed  CAS  Google Scholar 

  • Cheng HP, Walker GC (1998) Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two component regulatory system. J Bacteriol 180:20–26

    PubMed  CAS  Google Scholar 

  • Chi Z, Zhao S (2003) Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast. Enzyme Microb Technol 33:206–211

    CAS  Google Scholar 

  • Chi Z, Su CD, Lu WD (2007) A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresour Technol 98:1329–1332

    PubMed  CAS  Google Scholar 

  • Colliec JS, Chevolot L, Helley D, Ratiskol J, Bros A, Sinquin C, Roger O, Fischer AM (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernos. Biochim Biophys Acta 1528:141–151

    Google Scholar 

  • Daniels C, Vindurampulle C, Morona R (1998) Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28:1211–1222

    PubMed  CAS  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. J Appl Phycol 13:293–299

    Google Scholar 

  • Dean JA (1995) The analytical chemistry handbook. McGraw Hill, New York

    Google Scholar 

  • Dische Z, Shettles LB (1948) A specific colour reaction of methyl pentoses and a spectrophotometric micro method for their determination. J Biol Chem 175:595–603

    PubMed  CAS  Google Scholar 

  • Duan X, Chi Z, Wang L, Wang X (2008) Influence of different sugars on pullulan production and activities of α -phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 73:587–593

    CAS  Google Scholar 

  • Duboc P, Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int Dairy J 11:759–768

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Dumitriu S (2004) Microbial exopolysaccharides. In: Dekker M (ed) Polysaccharides: structural diversity and functional versatility. CRC Press, New York, pp 431–457

    Google Scholar 

  • Gacesa P (1998) Bacterial alginate biosynthesis recent progress and future prospects. Microbiology 144:1133–1143

    PubMed  CAS  Google Scholar 

  • Ganesh–Kumar C, Joo HS, Choi JW, Koo YM, Chang CS (2004) Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb Technol 34:673–681

    Google Scholar 

  • Gerbersdorf S, Westrich B, Paterson DM (2009) Microbial extracellular polymeric substances (EPS) in fresh water sediments. Microb Ecol 58:334–349

    PubMed  CAS  Google Scholar 

  • Glucksman MA, Reuber TL, Walker GC (1993) Genes needed for the modification, polymerization, export and processing of succinoglycan by Rhizobium meliloti: A model for succinoglycan biosynthesis. J Bacteriol 175:7045–7055

    Google Scholar 

  • Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, Dordrecht

    Google Scholar 

  • Griffin AM, Morris VJ, J M (1996a) Identification, cloning and sequencing the aceA gene involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol Lett 137:115–121

    PubMed  CAS  Google Scholar 

  • Griffin AM, Morris VJ, Gasson MJ (1996b) Genetic analysis of the acetan biosynthetic pathway in Acetobacter xylinum: nucleotide sequence analysis of the aceB, aceC, aceD, and aceE genes. DNA Seq 6:275–284

    PubMed  CAS  Google Scholar 

  • Griffin AM, Poelwijk ES, Morris VJ, Gasson MJ (1997a) Cloning of the aceF gene encoding the phosphomannose isomerase and GDP mannose pyrophosporylase activities involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol Lett 154:389–396

    PubMed  CAS  Google Scholar 

  • Griffin AM, Edwards KJ, Morris VJ, Gasson MJ (1997b) Genetic analysis of acetan biosynthesis in Acetobacter xylinum: DNA sequence analysis of the aceM gene encoding an UDP-glucose dehydrogenase. Biotechnol Lett 19:469–474

    CAS  Google Scholar 

  • Gummadi SN, Kumar K (2005) Production of extracellular water insoluble β-1,3-glucan (curdlan) from Bacillus sp. SNC07. Biotechnol Bioprocess Eng 10:546–551

    CAS  Google Scholar 

  • Harvey DJ (1999) Matrix assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–451

    PubMed  CAS  Google Scholar 

  • Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6:e18514

    PubMed  CAS  Google Scholar 

  • Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76(9):2916–2922. doi:10.1128/AEM.02289-09

    PubMed  CAS  Google Scholar 

  • Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Pühler A, Ielpi L (1998) Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617

    PubMed  CAS  Google Scholar 

  • Kavita K, Mishra A, Jha B (2011) Isolation and physico-chemical characterisation of extracellular polymeric substances produced by the marine bacterium Vibrio parahaemolyticus. Biofouling 27:309–317

    PubMed  CAS  Google Scholar 

  • Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic, New York, pp 287–363

    Google Scholar 

  • Kumar AS, Mody KH (2009) Microbial exopolysaccharides: variety and potential applications. In: Rehm BHA (ed) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic, Norfolk, pp 229–254

    Google Scholar 

  • Kumar AS, Mody KH, Jha B (2007) Bacterial exopolysaccharides–a perception. J Basic Microbiol 47:103–117

    PubMed  CAS  Google Scholar 

  • Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465

    PubMed  CAS  Google Scholar 

  • Lee HK, Chun J, Moon EJ, Ko SH, Lee DS, Lee HS, Bae KS (2001) Hahella chejuensis gen. nov., sp. nov., an extracellular polysaccharide producing marine bacterium. Int J Syst Evol Microbiol 51:661–666

    PubMed  CAS  Google Scholar 

  • Lieberman M, Markovitz A (1970) Depression of guanosine diphosphate-mannose pyrophosphorylase by mutations in two different regulator genes involved in capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol 101:965–972

    PubMed  CAS  Google Scholar 

  • Lin CC, Casida LE (1984) Gelrite as a gelling agent in media for the growth of thermophilic microorganisms. Appl Environ Microbiol 47:427–429

    PubMed  CAS  Google Scholar 

  • Liu D, Cole RA, Reeves PR (1996) An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107

    PubMed  CAS  Google Scholar 

  • Liu Y, Lam MC, Fang HHP (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43:59–67

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Google Scholar 

  • Manzoni M, Rollini M (2001) Isolation and characterization of the exopolysaccharide produced by Daedalea quercina. Biotechnol Lett 23:1491–1497

    CAS  Google Scholar 

  • Margaritis A, Pace GW (1985) Microbial polysaccharides. In: Blanch HW, Drew S, Wang DIC (eds) Comprehensive biotechnology. The practice of biotechnology: current commodity products, vol 3. Pergamon Press, New York, pp 1005–1045

    Google Scholar 

  • Martínez-Cánovas MJ, Quesada E, Martínez-Checa F, Béjar V (2004) A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48:348–353

    PubMed  Google Scholar 

  • Martinez-Salazar JM, Moreno S, Najera R, Boucher JC, Espin G, Soberon-Chavez G, Deretic V (1996) Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178:1800–1808

    PubMed  CAS  Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    PubMed  CAS  Google Scholar 

  • Mata JA, Béjar V, Llamas I, Arias S, Bressollier P, Tallon R, Urdaci MC, Quesada E (2006) Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol 157:827–835

    PubMed  CAS  Google Scholar 

  • Mata J, Béjar V, Bressollier P, Tallon R, Urdaci M, Quesada E, Llamas I (2008) Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae. J Appl Microbiol 105:521–528

    PubMed  CAS  Google Scholar 

  • Matsuda M, Yamori T, Naitoh M, Okutani K (2003) Structural revision of sulfated polysaccharide B-1 isolated from a marine pseudomonas species and its cytotoxic activity against human cancer cell lines. Mar Biotechnol 5:13–19

    PubMed  CAS  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, Nicolaus BA (2002) Halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol Lett 24:515–519

    CAS  Google Scholar 

  • McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    PubMed  CAS  Google Scholar 

  • Meisen S, Wingender J, Telgheder U (2008) Analysis of microbial extracellular polysaccharides in biofilms by HPLC. Part I: development of the analytical method using two complementary stationary phases. Anal Bioanal Chem 391:993–1002

    PubMed  CAS  Google Scholar 

  • Micheli L, Uccelletti D, Palleschi C, Crescenzi V (1999) Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl Environ Microbiol 53:69–74

    CAS  Google Scholar 

  • Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 100:3382–3386

    PubMed  CAS  Google Scholar 

  • Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857

    CAS  Google Scholar 

  • Muralidharan J, Jayachandran S (2003) Physicochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem 38:841–847

    CAS  Google Scholar 

  • Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860

    CAS  Google Scholar 

  • Nichols MC, Garon S, Bowman JP, Raguénès G, Guézennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96:1057–1066

    CAS  Google Scholar 

  • Nichols MC, Garon S, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    PubMed  CAS  Google Scholar 

  • Nicolaus B, Lama L, Panico A, Schiano-Moriello V, Romano I, Gambacorta A (2002) Production and characterization of exopolysaccharides excreted by thermophilic bacteria from shallow, marine hydrothermal vents of flegrean areas (Italy). Syst Appl Microbiol 25:319–325

    PubMed  CAS  Google Scholar 

  • Nicolaus B, Schiano-Moriello V, Lama L, Poli A, Gambacorta A (2004) Polysaccharides from extremophilic microorganisms. Orig Life Evol Biosph 34:159–169

    PubMed  CAS  Google Scholar 

  • Okutani K (1984) Antitumor and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio. Bull Jpn Soc Sci Fish 50:1035–1037

    Google Scholar 

  • Okutani K (1992) Antiviral activities of sulfated derivatives of a fucosamine-containing polysaccharide of marine bacterial origin. Nippon Suisan Gakk 58:927–930

    CAS  Google Scholar 

  • Ortega-Morales B, Santiago-García J, Chan-Bacab M, Moppert X, Miranda-Tello E, Fardeau M, Carrero J, Bartolo-Pérez P, Valadéz-González A, Guezennec J (2007) Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. J Appl Microbiol 102:254–264

    PubMed  CAS  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    PubMed  CAS  Google Scholar 

  • Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827

    PubMed  CAS  Google Scholar 

  • Patel RM, Patel VP (2011) Microbial polysaccharides: current innovations and future trends in medical science. Curr Pharma Res 1:204–209

    Google Scholar 

  • Pletikapić G, Radić TM, Zimmermann AH, Svetličić V, Pfannkuchen M, Marić D, Godrijan J, Žutić V (2011) AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & J.C. Lewin. J Mol Recognit 24:436–445

    PubMed  Google Scholar 

  • Poli A, Esposito E, Orlando P, Lama L, Giordano A, deAppolonia F, Nicolaus B, Gambacorta A (2007) Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide producing bacterium. Syst Appl Microbiol 30:31–38

    PubMed  CAS  Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802

    PubMed  CAS  Google Scholar 

  • Qin K, Zhu L, Chen L, Wang PG, Zhang Y (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology 153:1566–1572

    PubMed  CAS  Google Scholar 

  • Raguénès G, Pignet P, Gauthier G, Peres A, Christen R, Rougeaux H, Barbier G, Guezennec J (1996) Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl Environ Microbiol 62:67–73

    PubMed  Google Scholar 

  • Remminghorst U, Rehm BHA (2009) Microbial production of alginate: biosynthesis and applications. In: Rehm BHA (ed) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic, Norfolk, pp 13–42

    Google Scholar 

  • Ricou P, Pinel E, Juhasz N (2005) Temperature experiments for improved accuracy in the calculation of polyamide-11 crystallinity by X-ray diffraction. In: Advances in X-ray analysis, vol 48. International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA, pp 170–175

    Google Scholar 

  • Roseman S (1972) Carbohydrate transport in bacterial cells. In: Hokin LE (ed) Metabolic pathways, vol 6. Academic, London/New York, pp 41–89

    Google Scholar 

  • Rosenberg E, Ron E (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    PubMed  CAS  Google Scholar 

  • Rougeaux H, Guezennec J, Carlson RW, Kervarec N, Pichon R, Talaga P (1999) Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr Res 315:273–285

    PubMed  CAS  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    PubMed  CAS  Google Scholar 

  • Sheng GP, Yu HQ, Yue ZB (2005) Production of extracellular polymeric substances from Rhodopseudomonas acidophila, in the presence of toxic substances. Appl Microbiol Biotechnol 69:216–222

    PubMed  CAS  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    PubMed  CAS  Google Scholar 

  • Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CRK, Jha B (2011) Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydr Polym 84:1019–1026

    CAS  Google Scholar 

  • Stanford PA (1979) Exocellular, microbial polysaccharides. In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry, vol 36. Academic, London/New York, pp 266–303

    Google Scholar 

  • Stingele F, Neeser JR, Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680–1690

    PubMed  CAS  Google Scholar 

  • Subramanian BS, Yan S, Tyagi RD, Surampalli RY (2010) Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Res 44:2253–2266

    Google Scholar 

  • Sun S, Zhang Z, Luo Y, Zhong W, **ao M, Yi W, Yu L, Fu P (2011) Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery. Bioresour Technol 102:6153–6158

    PubMed  CAS  Google Scholar 

  • Sutherland IW (1997) Microbial exopolysaccharides- structural subtleties and their consequences. Pure Appl Chem 69:1911–1917

    CAS  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    PubMed  CAS  Google Scholar 

  • Sutherland IW (1999) Microbial polysaccharide products. Biotechnol Genet Eng Rev 16:217–229

    PubMed  CAS  Google Scholar 

  • Sutherland IW (2001) Microbial polysaccharides from gram negative bacteria. Int Dairy J 11:663–674

    CAS  Google Scholar 

  • Sutherland IW (2002) A sticky business. Microbial polysaccharides: current products and future trends. Microbiol Today 29:70–71

    Google Scholar 

  • Terho TT, Hartiala K (1971) Method for determination of the sulfate content of glycosaminoglycans. Anal Biochem 41:471–476

    PubMed  CAS  Google Scholar 

  • Tseng YH, Choy KT, Hung CH, Lin NT, Liu JY, Lou CH, Yang BY, Wen FS, Weng SF, Wu JR (1999) Chromosome map of Xanthomonas campestris pv. campestris 17 with locations of genes involved in xanthan gum synthesis and yellow pigmentation. J Bacteriol 181:117–125

    PubMed  CAS  Google Scholar 

  • Urai M, Yoshizaki H, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2007) Structural analysis of mucoidan, an acidic extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342:927–932

    PubMed  CAS  Google Scholar 

  • Vandamme EJ, Soetaert W (1995) Biotechnical modification of carbohydrates. FEMS Microbiol Rev 16:163–186

    CAS  Google Scholar 

  • Vanhooren PT, Vandamme EJ (2000) Microbial production of clavan, an L-fucose rich exopolysaccharide. In: Bielecki S, Tramper J, Polak J (eds) Food biotechnology. Elsevier, Amsterdam, pp 109–114

    Google Scholar 

  • Votselko SK, Pirog TP, Malashenko YR, Grinberg TA (1993) A method for determining the mass-molecular composition of microbial exopolysaccharides. J Microbiol Methods 18:349–356

    CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    PubMed  CAS  Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420

    PubMed  CAS  Google Scholar 

  • Widner B, Behr R, Von-Dollen S, Tang M, Heu T, Sloma A, Sternberg D, DeAngelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752

    PubMed  CAS  Google Scholar 

  • Yamada T, Kawasaki T (2005) Microbial synthesis of hyaluronan and chitin: new approaches. J Biosci Bioeng 99:521–528

    PubMed  CAS  Google Scholar 

  • Yamazaki M, Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687

    PubMed  CAS  Google Scholar 

  • Zhang DY, Wang JL, Pan XL (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater 138:589–593

    PubMed  CAS  Google Scholar 

  • Zou X, Sun M, Guo X (2006) Quantitative response of cell growth and polysaccharide biosynthesis by the medicinal mushroom Phellinus linteus to NaCl in the medium. World J Microbiol Biotechnol 22:1129–1133

    CAS  Google Scholar 

Download references

Acknowledgment

CSIR Network Project (NWP-0018) is thankfully acknowledged for research work conducted in the authors’ laboratory. Authors are also thankful to Prof. Eugene Rosenberg for critically editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavanath Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mishra, A., Jha, B. (2013). Microbial Exopolysaccharides. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_25

Download citation

Publish with us

Policies and ethics

Navigation