Reactive Oxygen Species Biology and Angiotensin Regulation of Human Vascular Tone – the Role of Angiotensin-Converting Enzyme (ACE) Inhibitors and AT1 Receptor Blockers (ARBs)

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

The role of RAS in the development of hypertension and cardiovascular and renal diseases has been extensively studied and is well established. The impact of oxidative stress in vascular homeostasis has also been clearly defined. Many of the cellular effects of Ang II appear to be mediated by ROS generated by NAD(P)H oxidase. Here we provide an overview of ROS physiology in human vessels and in particular the interaction with RAS, as well as a discussion on mechanisms by which therapeutic interventions on RAS affect redox signaling in the vascular wall at a clinical level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,999.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 2,599.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

ACEIs:

Angiotensin-converting enzyme inhibitors

ADMA:

Asymmetric dimethylarginine

AGT:

Angiotensinogen

Ang:

Angiotensin

ARBs:

AT1 receptor blockers

AT1R:

Angiotensin type 1 receptors

AT2R:

Angiotensin type 2 receptors

BB:

β-blocker

BH4 :

Tetrahydrobiopterin

BP:

Blood pressure

DDAH:

Dimethylarginine dimethylaminohydrolase

DRI:

Direct renin inhibitors

EGFR:

Epidermal growth factor receptor

eNOS:

Endothelial nitric oxide synthase

JAK:

Janus kinase

MRAs:

Mineralocorticoid receptor antagonists

NADPH:

Nicotinamide adenine dinucleotide phosphate

PAI-1:

Plasminogen activator inhibitor-1

PRA:

Plasma renin activity

PKC:

Protein kinase C

RAS:

Renin–angiotensin system

ROS:

Reactive oxygen species

TNF:

Tissue necrosis factor

References

  • Antoniades C, Antonopoulos AS, Tousoulis D, Stefanadis C (2009a) Adiponectin: from obesity to cardiovascular disease. Obes Rev 10(3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C (2009b) The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol 54(8):669–677

    Article  CAS  PubMed  Google Scholar 

  • Antoniades C, Shirodaria C, Leeson P, Antonopoulos A, Warrick N, Van-Assche T et al (2009c) Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J 30(9):1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Antoniades C, Tousoulis D, Tentolouris C, Toutouzas P, Stefanadis C (2003) Oxidative stress, antioxidant vitamins, and atherosclerosis. From basic research to clinical practice. Herz 28(7):628–638

    Article  PubMed  Google Scholar 

  • Berk BC, Corson MA (1997) Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circ Res 80(5):607–616

    Article  CAS  PubMed  Google Scholar 

  • Buikema H, Monnink SH, Tio RA, Crijns HJ, de Zeeuw D, van Gilst WH (2000) Comparison of zofenopril and lisinopril to study the role of the sulfhydryl-group in improvement of endothelial dysfunction with ACE-inhibitors in experimental heart failure. Br J Pharmacol 130(8):1999–2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen JW, Hsu NW, Wu TC, Lin SJ, Chang MS (2002) Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol 90(9):974–982

    Article  CAS  PubMed  Google Scholar 

  • D’Amore A, Black MJ, Thomas WG (2005) The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46(6):1347–1354

    Article  PubMed  Google Scholar 

  • Duprez DA (2006) Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens 24(6):983–991

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt RT, Kevak RM, Kang PM, Frishman WH (1993) Angiotensin II receptor blockade: an innovative approach to cardiovascular pharmacotherapy. J Clin Pharmacol 33(11):1023–1038

    Article  CAS  PubMed  Google Scholar 

  • Erdos EG, Tan F, Skidgel RA (2010) Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension 55(2):214–220

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferrario CM, Strawn WB (2006) Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 98(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Fleming I (2006) Signaling by the angiotensin-converting enzyme. Circ Res 98(7):887–896

    Article  CAS  PubMed  Google Scholar 

  • Fleming I, Kohlstedt K, Busse R (2005) New fACEs to the renin-angiotensin system. Physiology (Bethesda) 20:91–95

    Article  CAS  Google Scholar 

  • Fox KM (2003) Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 362(9386):782–788

    Article  CAS  PubMed  Google Scholar 

  • Fu YF, **ong Y, Guo Z (2005) A reduction of endogenous asymmetric dimethylarginine contributes to the effect of captopril on endothelial dysfunction induced by homocysteine in rats. Eur J Pharmacol 508(1–3):167–175

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6):1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501

    Article  CAS  PubMed  Google Scholar 

  • Hanze J, Weissmann N, Grimminger F, Seeger W, Rose F (2007) Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling. Thromb Haemost 97(5):774–787

    PubMed  Google Scholar 

  • Honjo T, Yamaoka-Tojo M, Inoue N (2011) Pleiotropic effects of ARB in vascular metabolism–focusing on atherosclerosis-based cardiovascular disease. Curr Vasc Pharmacol 9(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Hornig B, Landmesser U, Kohler C, Ahlersmann D, Spiekermann S, Christoph A et al (2001) Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 103(6):799–805

    Article  CAS  PubMed  Google Scholar 

  • Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H et al (2008) Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension 52(3):563–572

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Egashira K, Narishige T, Muramatsu K, Takeshita A (2001) Renin-angiotensin system is involved in the mechanism of increased serum asymmetric dimethylarginine in essential hypertension. Jpn Circ J 65(9):775–778

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Egashira K, Narishige T, Muramatsu K, Takeshita A (2002) Angiotensin-converting enzyme activity is involved in the mechanism of increased endogenous nitric oxide synthase inhibitor in patients with type 2 diabetes mellitus. Circ J 66(9):811–815

    Article  CAS  PubMed  Google Scholar 

  • Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20(9):1546–1548

    Article  CAS  PubMed  Google Scholar 

  • Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L et al (2004) Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 363(9426):2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski L, Malinski T (2004) Endothelial NADH/NADPH-dependent enzymatic sources of superoxide production: relationship to endothelial dysfunction. Acta Biochim Pol 51(2):459–469

    CAS  PubMed  Google Scholar 

  • Kim D, Chung J (2002) Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol 35(1):106–115

    Article  CAS  PubMed  Google Scholar 

  • Levy BI (2004) Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin-angiotensin system. Circulation 109(1):8–13

    Article  PubMed  Google Scholar 

  • Liu YH, Liu LY, Wu JX, Chen SX, Sun YX (2006) Comparison of captopril and enalapril to study the role of the sulfhydryl-group in improvement of endothelial dysfunction with ACE inhibitors in high dieted methionine mice. J Cardiovasc Pharmacol 47(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • McFarlane SI, Kumar A, Sowers JR (2003) Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol 91(12A):30H–37H

    Article  CAS  PubMed  Google Scholar 

  • Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292(1):C82–C97

    Article  CAS  PubMed  Google Scholar 

  • Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15(10):RA209–RA219

    CAS  PubMed  Google Scholar 

  • Napoli C, Sica V, de Nigris F, Pignalosa O, Condorelli M, Ignarro LJ et al (2004) Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am Heart J 148(1):e5

    Article  CAS  PubMed  Google Scholar 

  • Nguyen G, Danser AH (2008) Prorenin and (pro)renin receptor: a review of available data from in vitro studies and experimental models in rodents. Exp Physiol 93(5):557–563

    Article  CAS  PubMed  Google Scholar 

  • Nussberger J, Aubert JF, Bouzourene K, Pellegrin M, Hayoz D, Mazzolai L (2008) Renin inhibition by aliskiren prevents atherosclerosis progression: comparison with irbesartan, atenolol, and amlodipine. Hypertension 51(5):1306–1311

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos DP, Votteas V (2006) Role of perindopril in the prevention of stroke. Recent Pat Cardiovasc Drug Discov 1(3):283–289

    Article  CAS  PubMed  Google Scholar 

  • Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803

    Article  CAS  PubMed  Google Scholar 

  • Pimenta E, Oparil S (2009) Role of aliskiren in cardio-renal protection and use in hypertensives with multiple risk factors. Ther Clin Risk Manag 5(3):459–464

    PubMed Central  PubMed  Google Scholar 

  • Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I et al (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100(14):8258–8263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh M, Fujimoto S, Arakawa S, Yada T, Namikoshi T, Haruna Y et al (2008) Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol Dial Transplant 23(12):3806–3813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmieder RE, Martus P, Klingbeil A (1996) Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 275(19):1507–1513

    Article  CAS  PubMed  Google Scholar 

  • Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106(2):R1–R5

    PubMed  Google Scholar 

  • Steckelings UM, Kaschina E, Unger T (2005) The AT2 receptor—a matter of love and hate. Peptides 26(8):1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95(2):651–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strauss MH, Hall AS (2006) Angiotensin receptor blockers may increase risk of myocardial infarction: unraveling the ARB-MI paradox. Circulation 114(8):838–854

    Article  PubMed  Google Scholar 

  • Struthers AD, MacDonald TM (2004) Review of aldosterone- and angiotensin II-induced target organ damage and prevention. Cardiovasc Res 61(4):663–670

    Article  CAS  PubMed  Google Scholar 

  • Tousoulis D, Antoniades C, Nikolopoulou A, Koniari K, Vasiliadou C, Marinou K et al (2007) Interaction between cytokines and sCD40L in patients with stable and unstable coronary syndromes. Eur J Clin Invest 37(8):623–628

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM (2004) Reactive oxygen species and angiotensin II signaling in vascular cells – implications in cardiovascular disease. Braz J Med Biol Res 37(8):1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Trocha M, Szuba A, Merwid-Lad A, Sozanski T (2010) Effect of selected drugs on plasma asymmetric dimethylarginine (ADMA) levels. Pharmazie 65(8):562–571

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW (2001) Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21(4):489–495

    Article  CAS  PubMed  Google Scholar 

  • Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M et al (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99(15):2027–2033

    Article  CAS  PubMed  Google Scholar 

  • Wassmann S, Laufs U, Baumer AT, Muller K, Konkol C, Sauer H et al (2001) Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 59(3):646–654

    CAS  PubMed  Google Scholar 

  • Watanabe T, Suzuki J, Yamawaki H, Sharma VK, Sheu SS, Berk BC (2005) Losartan metabolite EXP3179 activates Akt and endothelial nitric oxide synthase via vascular endothelial growth factor receptor-2 in endothelial cells: angiotensin II type 1 receptor-independent effects of EXP3179. Circulation 112(12):1798–1805

    Article  CAS  PubMed  Google Scholar 

  • Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342(3):145–153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Koumallos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Koumallos, N., Sepehripour, A., Dimarakis, I., Paschalis, A., Nasir, A., Yonan, N. (2014). Reactive Oxygen Species Biology and Angiotensin Regulation of Human Vascular Tone – the Role of Angiotensin-Converting Enzyme (ACE) Inhibitors and AT1 Receptor Blockers (ARBs). In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_67

Download citation

Publish with us

Policies and ethics

Navigation