Neural Effects on Cardiac Electrophysiology

Interplay Between Beta-Adrenergic Receptors and Ion Channels

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics

Abstract

The interaction between brain and heart involves many actors, among which the sympathetic nervous system plays a major role. Since the first description of adrenoceptors by Raymond Ahlquist in 1948 and the use of beta-blockers by Sir James W. Black in patients with angina pectoris 10 years later, molecular cardiology has been investigating the intimate mechanisms enabling cardiac muscle to adapt (or maladapt) to emotional stress or physical demand. This continuous effort, exploiting state-of-the-art technologies to date, led to an impressive progress in our understanding of the machinery nearby the beta-adrenergic receptor and underneath, much more complex than imagined by pioneering studies of neural-brain axis. This review examines the features of these receptors – subtypes, localization, pathways, and effectors – mediating electrophysiological response of cardiomyocytes, with particular emphasis to control of excitation contraction coupling mechanisms and implications for arrhythmogenesis and cardiomyopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Musheshe N, Schmidt M, Zaccolo M. cAMP: from long-range second messenger to nanodomain signalling. Trends Pharmacol Sci. 2018;39(2):209–22.

    Article  CAS  Google Scholar 

  2. Laudette M, Zuo H, Lezoualc’h F, Schmidt M. Epac function and cAMP scaffolds in the heart and lung. J Cardiovasc Dev Dis. 2018;5(1):9.

    Article  Google Scholar 

  3. **ao RP, Ji X, Lakatta EG. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol. 1995;47(2):322–9.

    Article  CAS  Google Scholar 

  4. Sartiani L, Mannaioni G, Masi A, Romanelli MN, Cerbai E. The hyperpolarization-activated cyclic nucleotide–gated channels: from biophysics to pharmacology of a unique family of ion channels. Pharmacol Rev. 2017;69(4):354–95.

    Article  CAS  Google Scholar 

  5. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science. 2010;327(5973):1653–7.

    Article  CAS  Google Scholar 

  6. Sanchez-Alonso JL, Bhargava A, O’Hara T, Glukhov AV, Schobesberger S, Bhogal N, et al. Microdomain-specific modulation of L-type calcium channels leads to triggered ventricular arrhythmia in heart failure. Circ Res. 2016;119(8):944–55.

    Article  CAS  Google Scholar 

  7. Wright PT, Bhogal NK, Diakonov I, Pannell LMK, Perera RK, Bork NI, et al. Cardiomyocyte membrane structure and cAMP Compartmentation produce anatomical variation in beta2AR-cAMP responsiveness in murine hearts. Cell Rep. 2018;23(2):459–69.

    Article  CAS  Google Scholar 

  8. Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998;102(7):1377–84.

    Article  CAS  Google Scholar 

  9. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996;98(2):556–62.

    Article  CAS  Google Scholar 

  10. Spinelli V, Sartiani L, Mugelli A, Romanelli MN, Cerbai E. Hyperpolarization-activated cyclic-nucleotide-gated channels: pathophysiological, developmental, and pharmacological insights into their function in cellular excitability. Can J Physiol Pharmacol. 2018;96(10):977–84.

    Article  CAS  Google Scholar 

  11. Prando V, Da Broi F, Franzoso M, Plazzo AP, Pianca N, Francolini M, et al. Dynamics of neuroeffector coupling at cardiac sympathetic synapses. J Physiol. 2018;596(11):2055–75.

    Article  CAS  Google Scholar 

  12. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821–70.

    Article  CAS  Google Scholar 

  13. Jost N, Virág L, Bitay M, Takács J, Lengyel C, Biliczki P, et al. Restricting excessive cardiac action potential and QT prolongation. Circulation. 2005;112:1392–9.

    Article  Google Scholar 

  14. Campbell AS, Johnstone SR, Baillie GS, Smith G. Beta-adrenergic modulation of myocardial conduction velocity: connexins vs. sodium current. J Mol Cell Cardiol. 2014;77:147–54.

    Article  CAS  Google Scholar 

  15. Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127(5):575–84.

    Article  CAS  Google Scholar 

  16. Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino A, et al. Ranolazine prevents phenotype development in a mouse model of hypertrophic cardiomyopathy. Circ Heart Fail. 2017;0(3). pii: e003565.

    Google Scholar 

  17. Zankov DP, Yoshida H, Tsuji K, Toyoda F, Ding WG, Matsuura H, et al. Adrenergic regulation of the rapid component of delayed rectifier K+ current: implications for arrhythmogenesis in LQT2 patients. Heart Rhythm. 2009;6(7):1038–46.

    Article  Google Scholar 

  18. Bosch RF, Schneck AC, Kiehn J, Zhang W, Hambrock A, Eigenberger BW, et al. beta3-adrenergic regulation of an ion channel in the heart-inhibition of the slow delayed rectifier potassium current I(Ks) in guinea pig ventricular myocytes. Cardiovasc Res. 2002;56(3):393–403.

    Article  CAS  Google Scholar 

  19. Ferrantini C, Pioner JM, Mazzoni L, Gentile F, Tosi B, Rossi A, et al. Late sodium current inhibitors to treat exercise-induced obstruction in hypertrophic cardiomyopathy: an in vitro study in human myocardium. Br J Pharmacol. 2018;175(13):2635–52.

    Article  CAS  Google Scholar 

  20. Kang C, Badiceanu A, Brennan JA, Gloschat C, Qiao Y, Trayanova NA, et al. Beta-adrenergic stimulation augments transmural dispersion of repolarization via modulation of delayed rectifier currents IKs and IKr in the human ventricle. Sci Rep. 2017;7(1):15922.

    Article  CAS  Google Scholar 

  21. Cerbai E, Barbieri M, Mugelli A. Occurrence and properties of the hyperpolarization-activated current if in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation. 1996;94(7):1674–81.

    Article  CAS  Google Scholar 

  22. Stillitano F, Lonardo G, Zicha S, Varro A, Cerbai E, Mugelli A, et al. Molecular basis of funny current (I(f)) in normal and failing human heart. J Mol Cell Cardiol. 2008;45(2):289–99.

    Article  CAS  Google Scholar 

  23. Cerbai E, Pino R, Sartiani L, Mugelli A. Influence of postnatal-development on I(f) occurrence and properties in neonatal rat ventricular myocytes. Cardiovasc Res. 1999;42(2):416–23.

    Article  CAS  Google Scholar 

  24. Fernandez-Tenorio M, Niggli E. Stabilization of Ca(2+) signaling in cardiac muscle by stimulation of SERCA. J Mol Cell Cardiol. 2018;119:87–95.

    Article  CAS  Google Scholar 

  25. Lezcano N, Mariangelo JIE, Vittone L, Wehrens XHT, Said M, Mundina-Weilenmann C. Early effects of Epac depend on the fine-tuning of the sarcoplasmic reticulum Ca(2+) handling in cardiomyocytes. J Mol Cell Cardiol. 2018;114:1–9.

    Article  CAS  Google Scholar 

  26. Dote K, Sato H, Tateishi H, Uchida T, Ishihara M. Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases. J Cardiol. 1991;21(2):203–14.

    CAS  PubMed  Google Scholar 

  27. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48.

    Article  CAS  Google Scholar 

  28. Ellison GM, Torella D, Karakikes I, Purushothaman S, Curcio A, Gasparri C, et al. Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem. 2007;282(15):11397–409.

    Article  CAS  Google Scholar 

  29. Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O’Gara P, et al. High levels of circulating epinephrine trigger apical cardiodepression in a beta2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126(6):697–706.

    Article  CAS  Google Scholar 

  30. Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Poggesi C, et al. T-tubular electrical defects contribute to blunted beta-adrenergic response in heart failure. Int J Mol Sci. 2016;17(9). pii: E1471.

    Google Scholar 

  31. Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Tesi C, et al. Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci U S A. 2014;111(42):15196–201.

    Article  CAS  Google Scholar 

  32. Ferrantini C, Crocini C, Coppini R, Vanzi F, Tesi C, Cerbai E, et al. The transverse-axial tubular system of cardiomyocytes. Cell Mol Life Sci. 2013;70(24):4695–710.

    Article  CAS  Google Scholar 

  33. Lefkimmiatis K, Zaccolo M. cAMP signaling in subcellular compartments. Pharmacol Ther. 2014;143(3):295–304.

    Article  CAS  Google Scholar 

  34. Leroy J, Abi-Gerges A, Nikolaev VO, Richter W, Lechene P, Mazet JL, et al. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res. 2008;102(9):1091–100.

    Article  CAS  Google Scholar 

  35. Zhang Y, Knight W, Chen S, Mohan A, Yan C. Multiprotein complex with TRPC (transient receptor potential-canonical) channel, PDE1C (phosphodiesterase 1C), and A2R (adenosine A2 receptor) plays a critical role in regulating cardiomyocyte cAMP and survival. Circulation. 2018;138(18):1988–2002.

    Article  CAS  Google Scholar 

  36. Hashimoto T, Kim GE, Tunin RS, Adesiyun T, Hsu S, Nakagawa R, et al. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition. Circulation. 2018;138(18):1974–87.

    Article  CAS  Google Scholar 

  37. Carling D. The AMP-activated protein kinase cascade – a unifying system for energy control. Trends Biochem Sci. 2004;29(1):18–24.

    Article  CAS  Google Scholar 

  38. Harada M, Nattel SN, Nattel S. AMP-activated protein kinase: potential role in cardiac electrophysiology and arrhythmias. Circ Arrhythm Electrophysiol. 2012;5(4):860–7.

    Article  Google Scholar 

  39. Baruscotti M, Bianco E, Bucchi A, DiFrancesco D. Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the if “funny” current. J Interv Card Electrophysiol. 2016;46(1):19–28.

    Article  Google Scholar 

  40. D’Souza A, Bucchi A, Johnsen AB, Logantha SJ, Monfredi O, Yanni J, et al. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun. 2014;5:3775.

    Article  Google Scholar 

  41. Lonardo G, Cerbai E, Casini S, Giunti G, Bonacchi M, Battaglia F, et al. Pharmacological modulation of the hyperpolarization- activated current (I-f) in human atrial myocytes: focus on G protein-coupled receptors. J Mol Cell Cardiol. 2005;38(3):453–60.

    Article  CAS  Google Scholar 

  42. Pino R, Cerbai E, Calamai G, Alajmo F, Borgioli A, Braconi L, et al. Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes. Cardiovasc Res. 1998;40(3):516–22.

    Article  CAS  Google Scholar 

  43. Lonardo G, Cerbai E, Casini S, Giunti G, Bonacchi M, Battaglia F, et al. Atrial natriuretic peptide modulates the hyperpolarization-activated current (I-f) in human atrial myocytes. Cardiovasc Res. 2004;63(3):528–36.

    Article  CAS  Google Scholar 

  44. Suffredini S, Stillitano F, Comini L, Bouly M, Brogioni S, Ceconi C, et al. Long-term treatment with ivabradine in post-myocardial infarcted rats counteracts f-channel overexpression. Br J Pharmacol. 2012;165(5):1457–66.

    Article  CAS  Google Scholar 

  45. Kuwabara Y, Kuwahara K, Takano M, Kinoshita H, Arai Y, Yasuno S, et al. Increased expression of HCN channels in the ventricular myocardium contributes to enhanced arrhythmicity in mouse failing hearts. J Am Heart Assoc. 2013;2(3):e000150.

    Article  Google Scholar 

  46. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2):196–200.

    Article  CAS  Google Scholar 

  47. Ferrantini C, Coppini R, Scellini B, Ferrara C, Pioner JM, Mazzoni L, et al. R4496C RyR2 mutation impairs atrial and ventricular contractility. J Gen Physiol. 2016;147(1):39–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Mugelli .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cerbai, E., Coppini, R., Sartiani, L., Mugelli, A. (2019). Neural Effects on Cardiac Electrophysiology. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation