Effects of Spaceflight on the Nervous System

  • Living reference work entry
  • First Online:
Handbook of Space Pharmaceuticals

Abstract

Humans are born to live and work on earth’s environment under the influence of gravity. So far, the nervous system has been proven to adapt, when exposed to gravity-lacking environments, due to neuroplasticity developed under the new conditions. The aim of this chapter is to comprehend the NS alterations in space, a gravity-deprived environment, based on the knowledge of its basic structure and mode of functioning of its component parts on earth, discuss the various sensory and motor functions, and furthermore how our senses get together in order to provide information necessary to maintain equilibrium or balance, as well as its manifold relations to other organs. We will further describe the mechanism by which actions are directed and adapted to the conditions of life as well as the factors which have determined the course of evolution and the most significant, its functional relationships on earth with gravity but also in space with weightlessness environment, as well as under the aggravating factors of radiation, isolation and confinement, and noise.

In this chapter, we will examine how our brain and overall nervous system work together to provide us with the direction, guidance, and impulses necessary to function in everyday life. We will discuss the influence of gravity on the sensory and balance centers within our brains and the major effects on the senses and our perceptions that result from the lack of gravity. Those and other issues related to human presence in space will be addressed. To confront physical and functional limitations caused by adjustment of the nervous system to adapt to weightlessness and readapt to earth gravity, countermeasures may be needed, that have been tested, including medication, prevention techniques and training exhercises, physical rehabilitation, and mechanical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya MM, Baddour AA, Kawashita T, Allen BD, Syage AR, Nguyen TH (2017) Epigenetic determinants of space radiation-induced cognitive dysfunction. Sci Rep 7:42885

    Article  CAS  Google Scholar 

  • Alexander D, Gibson C, Hamilton D, Lee S, Mader T, Otto C (2012) Risk of spaceflight-induced intracranial hypertension and vision alterations. Evidence Report, Human Research Program, Human Health Countermeasures Element, version. 1:12.

    Google Scholar 

  • Alperin N, Bagci AM, Lee SH (2017) Spaceflight-induced changes in white matter hyperintensity burden in astronauts. Neurology 89:2187–2191. https://doi.org/10.1212/WNL.0000000000004475

    Article  PubMed  Google Scholar 

  • Barger L, Flynn-Evans E, Kubey A, Walsh L, Ronda J, Wright KP Jr, Czeisler C (2014) Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13. https://doi.org/10.1016/S1474-4422(14)70122-X

  • Barone J (2017) Pink noise for sleep. Berkeley Wellness

    Google Scholar 

  • Bechtel K (2013) Geschwind Ethics in prion disease. Prog Neurobiol 110:29–44

    Article  Google Scholar 

  • Bremner JD, Krystal JH, Southwick SM, Charney DS (1995) Functional neuroanatomical correlates of the effects of stress on memory. J Trauma Stress 8:527–553

    Article  CAS  Google Scholar 

  • Canadian Centre for Occupational Health & Safety (2014) Noise – Basic information

    Google Scholar 

  • Chersi F, Burgess N (2015) The cognitive architecture of spatial navigation: hippocampal and striatal contributions. Neuron 88(1):64–77. https://doi.org/10.1016/j.neuron.2015.09.021

    Article  CAS  PubMed  Google Scholar 

  • ClĂ©ment G (1998) Alteration of eye movements and motion perception in microgravity. Brain Res Rev 28(1–2):161–172. https://doi.org/10.1016/s0165-0173(98)00036-8

    Article  PubMed  Google Scholar 

  • ClĂ©ment G, Reschke M (2008) Neuroscience in space. Springer, New York. https://doi.org/10.1007/978-0-387-789-50-7_8. ISBN 9780387789491

    Book  Google Scholar 

  • ClĂ©ment G, Moore S, Raphan T, Cohen B (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138(4):410–418. https://doi.org/10.1007/s002210100706

    Article  PubMed  Google Scholar 

  • Correia MJ (1998) Neuronal plasticity: adaptation and readaptation to the environment of space. Brain Res Rev 28:61–65

    Article  CAS  Google Scholar 

  • Council G, Avail F (1783) Guidelines for noise and vibration levels for the space station. NASA Contractor Report, 10

    Google Scholar 

  • Davis JR, Vanderploeg JM, Santy PA (1988) Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 59:1185–1189

    CAS  PubMed  Google Scholar 

  • Deco G, Rolls ET, Albantakis L, Romo R (2013) Brain mechanisms for perceptual and reward-related decision-making. Prog Neurobiol 103:194–213

    Article  Google Scholar 

  • Demertzi A, Van Ombergen A, Tomilovskaya E, Jeurissen B, Pechenkova E, Di Perri C et al (2016) Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Struct Funct 221:2873–2876. https://doi.org/10.1007/s00429-015-1054-3

    Article  PubMed  Google Scholar 

  • Edwards TN, Meinertzhagen IA (2010) The functional organisation of glia in the adult brain of drosophila and other insects. Prog Neurobiol 90(4):471–497

    Article  CAS  Google Scholar 

  • Fujii MD, Patten BM (1992) Neurology of microgravity and space travel. Neurol Clin 10:999–1013

    Article  CAS  Google Scholar 

  • Fumagalli S, Ortolano F, De Simoni MG (2014) A close look at brain dynamics: cells and vascular system seen by in vivo two-photon microscopy. Prog Neurobiol 121:36–54

    Article  Google Scholar 

  • Grigoriev AI et al (1986) Means and methods of preventing the adverse effects of weightlessness. In: Gazenko OG, Gurovskiy NN (eds) Results of medical research on Salyut-6/Soyuz. Nauka, Moscow, pp 125–144

    Google Scholar 

  • Grigoriev AI et al (1987) Protection from the adverse effects of weightlessness. In: Gazenko OG (ed) Space biology and medicine. Nauka, Moscow, pp 59–87

    Google Scholar 

  • Gurfinkel V, Lestienne F, Levik Y, Popov K (1993) Egocentric references and human spatial orientation in microgravity. Exp Brain Res 95(2):339–342

    Article  CAS  Google Scholar 

  • Hargens AR, Bhattacharya R, Schneider SM (2013) Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol 113:2183–2192. https://doi.org/10.1007/s00421-012-2523-5

    Article  PubMed  Google Scholar 

  • He J, Zhang X, Gao Y, Li S, Sun Y (2008) Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum. Acta Astronaut 63:915–922

    Article  Google Scholar 

  • He C, Chen F, Li B, Hu Z (2014) Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog Neurobiol 112:1–23

    Article  CAS  Google Scholar 

  • Hill MA (2021, March 31) Embryology Book – the Nervous System of Vertebrates (1907) 5. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Book_-_The_Nervous_System_of_Vertebrates_(1907)

  • Hylton H (2007, February 8) Why Astronauts Don’t Like Shrinks. Time. Retrieved 22 July 2019, from http://content.time.com/time/health/article/0,8599,1587495,00.html

  • Ihle EC, Ritsher JB, Kanas N (2006) Positive psychological outcomes of spaceflight: an empirical study. Aviat Space Environ Med 77(2):93–101

    PubMed  Google Scholar 

  • Inglis-Arkell E (2012, December 11) What does space travel do to your mind? NASA’s Resident Psychiatrist Reveals All. Gizmodo. https://io9.gizmodo.com/5967408/what-does-space-travel-do-to-your-mind-nasas-resident-psychiatrist-reveals-all

  • Ivins M (2017, March 29) What Hollywood Gets Wrong About Female Astronauts and the Reality of Space. Time. Retrieved 21 July 2019, from https://time.com/4716473/hollywood-misconceptions-about-female-astronauts-space

  • Kastellakis G, Cai DJ, Mednick SC, Silva AJ, Poirazi P (2014) Synaptic clustering within dendrites: an emerging theory of memory formation. Prog Neurobiol 14:137–143

    Google Scholar 

  • Kornilova LN, Naumov IA, Glukhikh DO, Ekimovskiy GA, Pavlova AS, Khabarova VV et al (2017) Vestibular function and space motion sickness. Hum Physiol 43:557–568

    Article  Google Scholar 

  • Lee SH, Dudok B, Parihar VK, Jung KM, Zöldi M, Kang YJ (2017) Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission. Brain Struct Funct 222:2345–2357

    Article  CAS  Google Scholar 

  • Lee AG, Mader TH, Gibson CR et al (2018) Space flight-associated neuro-ocular syndrome (SANS). Eye (Lond) 32:1164–1167. https://doi.org/10.1038/s41433-018-0070-y

    Article  Google Scholar 

  • Li K, Guo X, ** Z, Ouyang X, Zeng Y, Feng J (2015) Effect of simulated microgravity on human brain gray matter and white matter – evidence from MRI. PLoS One 10:e0135835

    Article  Google Scholar 

  • Limardo J, Allen C, Danielson R (2017) International space station (ISS) crewmember’s noise exposures from 2015 to present. ResearchGate

    Google Scholar 

  • Liu A (2018, December 4) Personal interview

    Google Scholar 

  • Lujan BF, White R (1994) Human physiology in space. National Aeronautics and Space Administration, Washington DC. (A curriculum supplement for secondary schools. Open Library OL17752197M)

    Google Scholar 

  • Machado S, Cunha M, Velasques B, Minc D, Teixeira S, Domingues C, Silva J, Bastos VH, Budde H, Cagy M, Basile L, Piedade R, Ribeiro P (2010) Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization. Rev Neurol 51:427–436

    PubMed  Google Scholar 

  • Mader TH, Gibson CR, Pass AF et al (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118:2058–2069. https://doi.org/10.1016/j.ophtha.2011.06.021

    Article  PubMed  Google Scholar 

  • Moore T (2018, December 1) E-mail

    Google Scholar 

  • Morris NP (2017, March 14) Mental Health in Outer Space. Retrieved 1 Dec 2018, from https://blogs.scientificamerican.com/guest-blog/mental-health-in-outer-space

  • Nasa.gov (Link 1). (607107main_PsychologySpaceExploration-ebook.pdf (nasa.gov)

    Google Scholar 

  • Nasa.gov (Link 2). Wide Awake in Outer Space | Science Mission Directorate (nasa.gov)

    Google Scholar 

  • National Aeronautics and Space Administration (1987) Guidelines for noise and vibration levels for the space station

    Google Scholar 

  • National Aeronautics and Space Administration (2016a, February 17) About Analog Missions. Retrieved 21 July 2019, from https://www.nasa.gov/analogs/what-are-analog-missions

  • National Aeronautics and Space Administration (2016b, April 11) Evidence Report: risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders (Behavioral and psychiatric emergencies). Retrieved 22 July 2019, from https://humanresearchroadmap.nasa.gov/Evidence/reports/BMed.pdf

  • National Aeronautics and Space Administration (2018, April 13) Why Space Radiation Matters. Retrieved 22 July 2019, from https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters

  • National Aeronautics and Space Administration (n.d.) International space station acoustic measurement program

    Google Scholar 

  • Nicogossian AE (1989) Space physiology and medicine (pp. 139–153). C. L. Huntoon, & S. L. Pool (Eds.). Philadelphia, PA: Lea & Febiger

    Google Scholar 

  • Nicogossian H, Huntoon CL, Sam L (1994) Pool. Space Physiology and Medicine, 3rd

    Google Scholar 

  • Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL (1992) Recovery of postural equilibrium control following spaceflight. Ann N Y Acad Sci 656:747–754

    Article  CAS  Google Scholar 

  • Parihar VK, Pasha J, Tran KK, Craver BM, Acharya MM, Limoli CL (2015) Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct 220:1161–1171

    Article  CAS  Google Scholar 

  • Pechenkova E et al (2019) Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Front Physiol. https://doi.org/10.3389/fphys.2019.00761

  • Petit G, Cebolla AM, Fattinger S et al (2019) Local sleep-like events during wakefulness and their relationship to decreased alertness in astronauts on ISS. npj Microgravity 5(10). https://doi.org/10.1038/s41526-019-0069-0

  • Potter N (2008, August 18) Feeling low up high: the lonely astronaut. Retrieved 2 Dec 2018, from https://abcnews.go.com/Technology/story?id=5588291&page=1

  • Preissmann D, Leuba G, Savary C, Vernay A, Kraftsik R, Riederer IM (2012) Increased postsynaptic density protein-95 expression in the frontal cortex of aged cognitively impaired rats. Exp Biol Med (Maywood) 237:1331–1340

    Article  CAS  Google Scholar 

  • Ritsher JB, Kanas NA, Ihle EC, Saylor SA (2007) Psychological adaptation and salutogenesis in space: lessons from a series of studies. Acta Astronaut 60(4):336–340. https://doi.org/10.1016/j.actaastro.2006.09.002

    Article  Google Scholar 

  • Roberts DR, Albrecht MH, Collins HR et al (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377:1746–1753. https://doi.org/10.1056/NEJMoa1705129

    Article  PubMed  Google Scholar 

  • Roberts DR, Asemani D, Nietert PJ et al (2019) Prolonged microgravity affects human brain structure and function. AJNR Am J Neuroradiol 40(11):1878–1885. https://doi.org/10.3174/ajnr.A6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross MD (1993) Morphological changes in rat vestibular system following weightlessness. J Vestib Res 3:241–251

    CAS  PubMed  Google Scholar 

  • Ross MD (1994) A spaceflight study of synaptic plasticity in adult rat vestibular maculas. Acta Otolaryngol Suppl 516:1–14

    CAS  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM (2013) Cerebellum and gravity: altered earth’s gravity perception under pathological conditions and response to altered gravity in space. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N (eds) Handbook of the cerebellum and cerebellar disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_54

    Chapter  Google Scholar 

  • Sarkar P, Sarkar S, Ramesh V, Hayes BE, Thomas RL, Wilson BL (2006) Proteomic analysis of mice hippocampus in simulated microgravity environment. J Proteome Res 5:548–553

    Article  CAS  Google Scholar 

  • Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16:264–277

    Article  CAS  Google Scholar 

  • Suedfeld P, Weiszbeck T (2004) The impact of outer space on inner space [Abstract]. Aviat Space Environ Med 75(7). Retrieved 22 July 2019. https://www.ncbi.nlm.nih.gov/pubmed/15267069

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340

    Article  CAS  Google Scholar 

  • Thornton W, Biggers W, Thomas W, Pool S, Thaggart N (1985) Electronystagmography and audio potentials in spaceflight. Laryngoscope 95:924–932

    Article  CAS  Google Scholar 

  • Van Ombergen A, Laureys S, Sunaert S, Tomilovskaya E, Parizel PM, Wuyts FL (2017) Spaceflight-induced neuroplasticity in humans as measured by MRI: what do we know so far? NPJ Microgravity 3:2. https://doi.org/10.1038/s41526-016-0010-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Ombergen A, Jillings S, Jeurissen B et al (2018) Brain tissue-volume changes in cosmonauts. N Engl J Med 379:1678–1680. https://doi.org/10.1056/NEJMc1809011

    Article  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and sha** neuronal circuit structure and function. Trends Neurosci 36:209–217

    Article  CAS  Google Scholar 

  • Wood CD, Manno JE, Manno BR, Odenheimer RC, Bairnsfather LE (1986) The effect of antimotion sickness drugs on habituation to motion. Aviation, space, and environmental medicine

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysoula Kourtidou-Papadeli .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kourtidou-Papadeli, C. (2021). Effects of Spaceflight on the Nervous System. In: Pathak, Y., AraĂºjo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation