Compact Nanosecond Pulse Generator Based on Printed Circuit Board Transmission Lines and Solid-State Switches

  • Living reference work entry
  • First Online:
Handbook of Electroporation
  • 247 Accesses

Abstract

In order to explore the biomedical application of nanosecond pulsed electric fields (nsPEFs), researchers have used numerous methods to develop nanosecond pulse generators. Transmission line-based generators are widely used for their good reliability and simplicity. With traditional method, strip lines and spark gap switches are almost homemade. At the same time, manufacture techniques of PCB (printed circuit board) strip line and solid-state switch with universal manufacture standards will benefit the generators to be compact, portable, and reliable. This chapter provides guides to develop a compact nanosecond pulse generator for biomedical application based on PCB transmission lines and solid-state switches. Firstly, the principle of Blumlein strip line pulse generator including traditional balanced, unbalanced, and stacked Blumlein strip line is presented. Unbalanced Blumlein strip line could be used to generate output voltage with variable duration and variable amplitude. Stacked Blumlein strip line could be regarded as a voltage multiplier or a current amplifier. Then, as a main part, this chapter proposes the detailed design key points of this kind of compact generator including PCB strip line, PCB microstrip line, stacked PCB transmission lines, and stacked solid-state switches. Characteristic parameters, attenuation and design procedure with detailed equations of different strip lines, and PCB design techniques with parameters of different dielectric materials are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Batista Napotnik T, Reberšek M, Vernier PT, Mali B, Miklavčič D (2016) Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 110:1–12. doi:10.1016/j.bioelechem.2016.02.011

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ et al (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30(1):286–291. doi:10.1109/TPS.2002.1003872

    Article  Google Scholar 

  • Behrend M, Kuthi A, Gu X et al (2003) Pulse generators for pulsed electric field exposure of biological cells and tissues. IEEE Trans Dielectr Electr Insul 10(5):820–825. doi:10.1109/TDEI.2003.1237331

    Article  Google Scholar 

  • Bluhm H (2006) Pulsed power systems: principles and applications. Springer, Berlin

    Google Scholar 

  • Chen X, Kolb JF, Swanson RJ et al (2010) Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res 23(4):554–563. doi:10.1111/j.1755-148X.2010.00704.x

    Article  Google Scholar 

  • Collin RE (2000) Foundations for microwave engineering, 2nd edn. Wiley-IEEE Press, New York

    Google Scholar 

  • Deng J, Stark RH, Schoenbach KH (2000) A nanosecond pulse generator for intracellular electromanipulation. International power modulator symposium, pp 47–50. doi:10.1109/MODSYM.2000.896161

    Google Scholar 

  • Katsuki S, Moreira K, Dobbs F, et al (2002) Bacterial decontamination with nanosecond pulsed electric fields. The 1994 Twenty-first international power modulator symposium, pp 648–651. doi:10.1109/MODSYM.2002.1189561

    Google Scholar 

  • Kolb JF, Kono S, Schoenbach KH (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27(3):172–187. doi:10.1002/bem.20185

    Article  Google Scholar 

  • Li S, Qian B, Yang H et al (2011) Influence of different convolution methods on output characteristics of rolled strip pulse forming line. Qiangjiguang Yu Lizishu/High Power Laser Part Beams 23(11):2888–2892. doi:10.3788/HPLPB20112311.2888

    Article  Google Scholar 

  • Ma S (2007) Design and implementation of high-voltage transmission line pulse generator. Qinghai Electr Power 26(2):43–45. doi:10.15919/j.cnki.qhep.2007.02.014

    Google Scholar 

  • Martin TH, Guenther AH, Kristiansen M (1996) J. C. Martin on pulsed power. Plenum, New York. doi:10.1007/978-1-4899-1561-0

    Book  Google Scholar 

  • Mi Y, Zhang Y, Wan J et al (2016) Nanosecond pulse generator based on an unbalanced Blumlein multilayered microstrip transmission line and solid-state switches. IEEE Trans Plasma Sci 44(5):795–802. doi:10.1109/TPS.2016.2542521

    Article  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X et al (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343(2):351–360. doi:10.1109/MODSYM.2006.365310

    Article  Google Scholar 

  • Nuccitelli R, Chen X, Pakhomov AG et al (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125(2):438–445. doi:10.1002/ijc.24345

    Article  Google Scholar 

  • Nuccitelli R, Huynh J, Lui K et al (2013) Nanoelectroablation of human pancreatic carcinoma in a murine xenograft model without recurrence. Int J Cancer 132(8):1933–1939. doi:10.1002/ijc.27860

    Article  Google Scholar 

  • Nuccitelli R, Wood R, Kreis M et al (2014) First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: proof of method. Exp Dermatol 23(2):135–137. doi:10.1111/exd.12303

    Article  Google Scholar 

  • Pai ST, Zhang Q (1995) Introduction to high power pulse technology. World Sci Singap. doi:10.1142/2311

    Google Scholar 

  • Pakhomov AG, Kolb JF, White JA et al (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28(8):655–663. doi:10.1002/bem.20354

    Article  Google Scholar 

  • Romeo S, D’Avino C, Zeni O et al (2013) A Blumlein, nanosecond pulse generator with interchangeable transmission lines for bioelectrical applications. IEEE Trans Dielectr Electr Insul 20(4):1224–1230. doi:10.1109/TDEI.2013.6571438

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92(7):1122–1137. doi:10.1109/JPROC.2004.829009

    Article  Google Scholar 

  • Schoenbach KH, Katsuki S, Stark RH et al (2002) Bioelectrics-new applications for pulsed power technology. IEEE Trans Plasma Sci 30(1):293–300. doi:10.1109/TPS.2002.1003873

    Article  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y et al (2006) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers – in cells and in silico. Phys Biol 3(4):233–247. doi:10.1088/1478-3975/3/4/001

    Article  Google Scholar 

  • Wheeler HA (1965) Transmission line properties of parallel strip separated by a dielectric sheet. IEEE Trans Microw Theory Tech MTT-13.2:172–185. doi:10.1109/TMTT.1965.1125962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Mi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Mi, Y., Wan, J., Zhang, Y. (2017). Compact Nanosecond Pulse Generator Based on Printed Circuit Board Transmission Lines and Solid-State Switches. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-26779-1_212-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26779-1_212-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26779-1

  • Online ISBN: 978-3-319-26779-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation